Constant together

Calculus Level 3

0 π cos ( sin ( sin t ) e cos t ) e e cos t cos ( sin t ) d t = ? \int_{0}^{\pi} \cos\left(\sin (\sin t )e^{\cos t}\right) e^{e^{\cos t} \cos (\sin t)}\,dt = \,?

Problem by Cornel loan Valean

π e \dfrac{\pi}{e} π e \pi e π e e π \pi^{e}e^{\pi} e π \dfrac{e}{\pi}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Fish Recon
May 27, 2018

I solved this on Quora first:

Consider the function f ( x ) = e e x \displaystyle f(x) = e^{e^{x}} Then, exploiting Euler’s formula: f ( e i t ) = e e e i t = e e cos t + i sin t = e e cos t e i sin t = e e cos t ( cos ( sin t ) + i sin ( sin t ) ) = e e cos t cos ( sin t ) ( cos ( e cos t sin ( sin t ) + i sin ( e cos t sin ( sin t ) ) \displaystyle\begin{aligned}f(e^{it}) &= e^{e^{e^{it}}} = e^{e^{\cos t + i\sin t}} = e^{e^{\cos t}e^{i\sin t}}\\&=e^{e^{\cos t}(\cos(\sin t) + i\sin(\sin t))}\\&=e^{e^{\cos t}\cos(\sin t)}(\cos (e^{\cos t}\sin(\sin t) + i\sin(e^{\cos t}\sin(\sin t))\end{aligned} Also since f ( x ) f(x) is analytic around x 0 = 0 x_{0} = 0 , the following series converges to f ( x ) f(x) in the neighborhood of zero: f ( x ) = n = 0 a n x n \displaystyle f(x) = \sum_{n = 0}^{\infty}a_{n}x^{n} Then we have, f ( e i t ) = n = 0 a n e i n t \displaystyle f(e^{it}) = \sum_{n = 0}^{\infty}a_{n}e^{int} Equating real parts, { f ( e i t ) } = { n = 0 a n e i n t } \displaystyle \Re\{f(e^{it})\} = \Re\left\{\sum_{n = 0}^{\infty}a_{n}e^{int}\right\} Now integrate both sides from 0 0 to π \pi and use the fact that s p a n { 1 , cos ( n x ) } span\{1, \cos(nx)\} is an orthogonal set of functions for ( 0 , π ) R (0,\pi) \to \mathbb{R} i.e. n Z \forall n \in \mathbb{Z} 0 π cos ( n t ) d t = 0. \int_{0}^{\pi}\cos(nt)\,dt = 0. 0 π e e cos t cos ( sin t ) ( cos ( e cos t sin ( sin t ) ) = a 0 = 0 π e e 0 d t = π e \displaystyle \begin{aligned}\int_{0}^{\pi}e^{e^{\cos t}\cos(\sin t)}(\cos (e^{\cos t}\sin(\sin t)) &= a_{0}\\&= \int_{0}^{\pi}e^{e^{0}}\,dt\\&= \pi e\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...