Construct the triangle yourself!

Geometry Level 5

Point P P is located inside A B C \triangle ABC such that P A B = P B C = P C A = θ \angle PAB = \angle PBC = \angle PCA = \theta . The sides of the triangle are A B = 41 AB = 41 , B C = 50 BC=50 and C A = 89 CA=89 . If tan θ \tan{\theta} is of the form k 2017 \dfrac{k}{2017} , find k k .


The answer is 280.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

From point P P drop perpendiculars to the three sides as shown. Name the points of intersection with the sides as D D , E E and F F as shown. Let B E BE be x x , F C FC be y y and A D AD be z z . Considering the triangles with angle θ \theta , we have

t a n θ = P D z tan~\theta=\frac{PD}{z} \color{#D61F06}\implies P D = z t a n θ PD = z~tan\theta

t a n θ = F P y tan~\theta=\frac{FP}{y} \color{#D61F06}\implies F P = y t a n θ FP = y~tan\theta

t a n θ = E P x tan~\theta=\frac{EP}{x} \color{#D61F06}\implies E P = x t a n θ EP = x~tan\theta

The area of triangle A B C ABC can be solve in two ways

( 1. ) (1.)

A A B C = A A P B + A A P C + A B P C = 1 2 ( 41 ) ( z t a n θ ) + 1 2 ( 89 ) ( y t a n θ ) + 1 2 ( 50 ) ( x t a n θ ) = 1 2 t a n θ ( 41 z + 89 y + 50 x A_{ABC}=A_{APB}+A_{APC}+A_{BPC}=\frac{1}{2}(41)(z~tan\theta)+\frac{1}{2}(89)(y~tan\theta)+\frac{1}{2}(50)(x~tan\theta)=\frac{1}{2}tan\theta(41z+89y+50x )

( 2. ) (2.) By Heron's Formula

s = 41 + 50 + 89 2 = 90 s = \frac{41+50+89}{2} = 90

A A B C = 90 ( 90 41 ) ( 90 50 ) ( 90 89 ) = 420 A_{ABC} = \sqrt{90(90-41)(90-50)(90-89)} = 420

By Pythagorean Theorem, we have \text{By Pythagorean Theorem, we have}

x 2 + x 2 t a n 2 θ = z 2 t a n 2 θ + ( 41 z ) 2 x^2 + x^2tan^2\theta = z^2tan^2\theta + (41-z)^2 ( 1 ) \color{#3D99F6}(1)

y 2 + y 2 t a n 2 θ = x 2 t a n 2 θ + ( 50 x ) 2 y^2 + y^2tan^2\theta = x^2tan^2\theta + (50-x)^2 ( 2 ) \color{#3D99F6}(2)

z 2 + z 2 t a n 2 θ = y 2 t a n 2 θ + ( 89 y ) 2 z^2 + z^2tan^2\theta = y^2tan^2\theta + (89-y)^2 ( 3 ) \color{#3D99F6}(3)

Adding the three equations, we get \text{Adding the three equations, we get}

41 z + 50 x + 89 y = 6051 41z + 50x + 89y = 6051 ( 4 ) \color{#3D99F6}(4)

Going back to the area of triangle \text{Going back to the area of triangle} A B C ABC , substitute \text{substitute} ( 4 ) \color{#3D99F6}(4) and \text{and} A A B C = 420 A_{ABC}=420

A A B C = 1 2 t a n θ ( 41 z + 89 y + 50 x A_{ABC}=\frac{1}{2}tan\theta(41z+89y+50x ) \color{#D61F06}\implies 420 = 1 2 t a n θ ( 6051 ) 420 = \frac{1}{2}tan\theta(6051) \color{#D61F06}\implies t a n θ = 280 2017 \boxed{tan\theta = \large\dfrac{280}{2017}}

\huge\therefore k = 280 \boxed{\huge\color{#20A900}k = 280}

Ahmad Saad
Apr 2, 2017

In general, in any Δ A B C \Delta ABC , the angle θ \theta as per given condition, is given by general formula

tan θ = sin A sin B sin C 1 + cos A cos B cos C \boxed{\tan\theta=\frac{\sin A\sin B\sin C}{1+\cos A\cos B\cos C}}

As per given question, a = 50 , b = 89 , c = 41 a=50, b=89, c=41

cos A = b 2 + c 2 a 2 2 b c = 3551 3649 , sin A = 1 cos 2 A = 840 3649 \cos A=\frac{b^2+c^2-a^2}{2bc}=\frac{3551}{3649}, \sin A=\sqrt{1-\cos^2A}=\frac{840}{3649}

cos B = 187 205 , sin B = 1 cos 2 B = 84 205 \cos B=-\frac{187}{205}, \sin B=\sqrt{1-\cos^2B}=\frac{84}{205}

cos C = 437 445 , sin C = 1 cos 2 C = 84 445 \cos C=\frac{437}{445}, \sin C=\sqrt{1-\cos^2C}=\frac{84}{445}

setting all the values in above formula & simplifying, we get

tan θ = 840 3649 84 205 84 445 1 + 3551 3649 ( 187 205 ) 437 445 \tan\theta=\frac{\frac{840}{3649}\cdot\frac{84}{205}\cdot\frac{84}{445} }{1+\frac{3551}{3649}\cdot\left(-\frac{187}{205}\right)\cdot\frac{437}{445}}

tan θ = 280 2017 \tan\theta=\frac{280}{2017}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...