For 2 < x < 5 , the greatest value of ( 5 − x ) 2 ( x − 2 ) 5 is at x = b a , where a , b are coprime integers.
Enter value of a b as your answer.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice did the same way , enjoyed it too much , want to reshare it
S i n c e w e n e e d t o f i n d t h e m a x i m u m o f t h i s e q u a t i o n , s o a t m a x i m a , d e r i v a t i v e o f ( 5 − x ) 2 ( x − 2 ) 5 w . r . t . x = 0 S o d x d ( 5 − x ) 2 ( x − 2 ) 5 = 0 [ ( 5 − x ) 2 d x d ( x − 2 ) 5 ] + [ ( x − 2 ) 5 d x d ( 5 − x ) 2 = 0 [ 5 ( 5 − x ) 2 ( x − 2 ) 4 d x d ( x − 2 ) ] + [ 2 ( x − 2 ) 5 ( 5 − x ) d x d ( 5 − x ) ] = 0 [ 5 ( 5 − x ) 2 ( x − 2 ) 4 ( 1 ) ] + [ 2 ( x − 2 ) 5 ( 5 − x ) ( − 1 ) ] = 0 T a k i n g c o m m o n : ( x − 2 ) 4 ( 5 − x ) [ 5 ( 5 − x ) − 2 ( x − 2 ) ] = 0 ( x − 2 ) 4 ( 5 − x ) ( 2 5 − 5 x − 2 x + 4 ) = 0 ( x − 2 ) 4 ( 5 − x ) ( 2 9 − 7 x ) = 0 C l e a r l y , e i t h e r x = 2 , x = 5 o r x = 7 2 9 N o w , i t h a s b e e n g i v e n t h a t 2 < x < 5 , s o , x i s o n l y l e f t w i t h 7 2 9 C o m p a r i n g w i t h x = b a , a = 2 9 , b = 7 . S o a × b = 2 9 × 7 = 2 0 3
CHEERS!!:):)
yeah Exactly ! :)
One comment. You should probably mention that a and b are positive coprime integers.
Don't need positive. -7 x -29 = 7 x 29
( 5 − x ) 2 ( x − 2 )
Substitute u = x − 2 < = > − x = 3 − u and the equation reduces tremendously:
u 5 ( 3 − u ) 2
u 5 ( 9 − 6 u + u 2 )
f ( u ) = u 7 − 6 u 6 + 9 u 5
This leads to:
f ′ ( u ) = 7 u 6 ( u 2 − 7 3 6 u + 7 4 5 )
u can't be 0 because of the restrictions on the interval. This results to a simple quadratic equation:
u 2 − 7 3 6 u + 7 4 5
We get
u = 7 1 5 ∧ u = 3
Coming back to our substitution we recognize that u = 3 is not in the given intervall, thus:
7 1 5 = x − 2 < = > x = 7 2 9
Use the concept of maxima and minima to find the answer
Let the function be f ( x ) , so that f ( x ) = ( 5 − x ) 2 ( x − 2 ) 5 .
Differentiating using the product rule and chain rule gives:
f ′ ( x ) = 5 ( x − 2 ) 4 ( 5 − x ) 2 − 2 ( 5 − x ) ( x − 2 ) 5
Setting f ′ ( x ) = 0 to find maximum value:
5 ( x − 2 ) 4 ( 5 − x ) 2 − 2 ( 5 − x ) ( x − 2 ) 5 = 0
5 ( x − 2 ) 4 ( 5 − x ) 2 = 2 ( 5 − x ) ( x − 2 ) 5
Simplifying:
5 ( 5 − x ) = 2 ( x − 2 )
2 5 − 5 x = 2 x − 4
7 x = 2 9
x = 2 9 / 7
Comparing with x = a / b : a = 2 9 ; b = 7
Therefore, a b = 2 9 × 7 = 2 0 3
On a side note, you should state that a and b are positive coprime integers, or else they can be any two numbers which when a divided by b gives 29/7.
Differentiate as follows:
d x d ( ( 5 − x ) 2 ( x − 2 ) 5 ) =
− 2 ( 5 − x ) ( x − 2 ) 5 + ( 5 − x ) 2 5 ( x − 2 ) 4 =
( 5 − x ) ( x − 2 ) 4 ( 7 x − 2 9 )
so solving for x in
7 x − 2 9 = 0
gets us x = 7 2 9
Similar solution with @Shivang Jindal 's but different presentation.
Since 5 − x > 0 and x − 2 > 0 for 2 < x < 5 , we can apply AM-GM inequality as follows:
2 5 − x + 2 5 − x + 5 x − 2 + 5 x − 2 + 5 x − 2 + 5 x − 2 + 5 x − 2 + 5 x − 2 ≥ 7 7 ( 2 5 − x ) 2 ( 5 x − 2 ) 5
Equality occurs when 2 5 − x = 5 x − 2 or x = 7 2 9 . Therefore a b = 2 9 × 7 = 2 0 3 .
Problem Loading...
Note Loading...
Set Loading...
Or, Note that in 2 < x < 5 , 5 − x > 0 , x − 2 > 0 . Consider the expression 2 5 − x + 2 5 − x + 5 x − 2 + 5 x − 2 + 5 x − 2 + 5 x − 2 + 5 x − 2 = 3 And apply AM-GM inequality to these 7 terms.
Equality when , 5 x − 2 = 2 5 − x ⟹ x = 7 2 9