continue your search...!!

Calculus Level 3

For 2 < x < 5 2<x<5 , the greatest value of ( 5 x ) 2 ( x 2 ) 5 (5-x)^{2}(x-2)^{5} is at x = a b x=\dfrac{a}{b} , where a , b a,b are coprime integers.

Enter value of a b ab as your answer.


You can try my other Sequences And Series problems by clicking here : Part II and here : Part I.


The answer is 203.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Shivang Jindal
Oct 23, 2014

Or, Note that in 2 < x < 5 2 < x < 5 , 5 x > 0 , x 2 > 0 5-x>0, x-2>0 . Consider the expression 5 x 2 + 5 x 2 + x 2 5 + x 2 5 + x 2 5 + x 2 5 + x 2 5 = 3 \frac{5-x}{2}+ \frac{5-x}{2}+\frac{x-2}{5} +\frac{x-2}{5} +\frac{x-2}{5} +\frac{x-2}{5} +\frac{x-2}{5} = 3 And apply AM-GM inequality to these 7 terms.

Equality when , x 2 5 = 5 x 2 x = 29 7 \frac{x-2}{5} = \frac{5-x}{2} \implies x= \frac{29}{7}

Nice did the same way , enjoyed it too much , want to reshare it

U Z - 6 years, 6 months ago

S i n c e w e n e e d t o f i n d t h e m a x i m u m o f t h i s e q u a t i o n , s o a t m a x i m a , d e r i v a t i v e o f ( 5 x ) 2 ( x 2 ) 5 w . r . t . x = 0 S o d d x ( 5 x ) 2 ( x 2 ) 5 = 0 [ ( 5 x ) 2 d d x ( x 2 ) 5 ] + [ ( x 2 ) 5 d d x ( 5 x ) 2 = 0 [ 5 ( 5 x ) 2 ( x 2 ) 4 d d x ( x 2 ) ] + [ 2 ( x 2 ) 5 ( 5 x ) d d x ( 5 x ) ] = 0 [ 5 ( 5 x ) 2 ( x 2 ) 4 ( 1 ) ] + [ 2 ( x 2 ) 5 ( 5 x ) ( 1 ) ] = 0 T a k i n g c o m m o n : ( x 2 ) 4 ( 5 x ) [ 5 ( 5 x ) 2 ( x 2 ) ] = 0 ( x 2 ) 4 ( 5 x ) ( 25 5 x 2 x + 4 ) = 0 ( x 2 ) 4 ( 5 x ) ( 29 7 x ) = 0 C l e a r l y , e i t h e r x = 2 , x = 5 o r x = 29 7 N o w , i t h a s b e e n g i v e n t h a t 2 < x < 5 , s o , x i s o n l y l e f t w i t h 29 7 C o m p a r i n g w i t h x = a b , a = 29 , b = 7. S o a × b = 29 × 7 = 203 Since\quad we\quad need\quad to\quad find\quad the\quad maximum\quad of\quad this\quad equation,\\ so\quad at\quad maxima,\\ derivative\quad of\quad { (5-x) }^{ 2 }{ (x-2) }^{ 5 }\quad w.r.t.\quad x\quad =0\\ So\quad \frac { d }{ dx } { (5-x) }^{ 2 }{ (x-2) }^{ 5 }=0\\ { [(5-x) }^{ 2 }\frac { d }{ dx } { (x-2) }^{ 5 }]+[{ (x-2) }^{ 5 }\frac { d }{ dx } { (5-x) }^{ 2 }=0\\ [5{ (5-x) }^{ 2 }{ (x-2) }^{ 4 }\frac { d }{ dx } (x-2)]+[{ 2(x-2) }^{ 5 }(5-x)\frac { d }{ dx } (5-x)]=0\\ [5{ (5-x) }^{ 2 }{ (x-2) }^{ 4 }(1)]+[2{ (x-2) }^{ 5 }(5-x)(-1)]=0\\ Taking\quad common:\\ { (x-2) }^{ 4 }(5-x)\quad [5(5-x)-2(x-2)]=0\\ { (x-2) }^{ 4 }(5-x)(25-5x-2x+4)=0\\ { (x-2) }^{ 4 }(5-x)(29-7x)=0\\ Clearly,\quad either\quad x=2,\quad x=5\quad or\quad x=\frac { 29 }{ 7 } \\ Now,\quad it\quad has\quad been\quad given\quad that\quad 2\quad <\quad x\quad <\quad 5,so,\quad x\quad is\quad \\ only\quad left\quad with\frac { 29 }{ 7 } \\ Comparing\quad with\quad x=\frac { a }{ b } ,\quad a=29,\quad b=7.\\ So\quad a\quad \times \quad b=\quad 29\times 7\quad =\quad 203

CHEERS!!:):)

yeah Exactly ! :)

Sandeep Bhardwaj - 6 years, 8 months ago
Geoff Pilling
Sep 13, 2018

One comment. You should probably mention that a and b are positive coprime integers.

Don't need positive. -7 x -29 = 7 x 29

Jeremy Galvagni - 2 years, 9 months ago

Log in to reply

Ah good point! ;)

Geoff Pilling - 2 years, 9 months ago
Étienne Munćan
Jun 5, 2020

( 5 x ) 2 ( x 2 ) (5-x)^2(x-2)

Substitute u = x 2 < = > x = 3 u u=x-2 <=> -x=3-u and the equation reduces tremendously:

u 5 ( 3 u ) 2 u^5(3-u)^2

u 5 ( 9 6 u + u 2 ) u^5(9-6u+u^2)

f ( u ) = u 7 6 u 6 + 9 u 5 f(u)=u^7-6u^6+9u^5

This leads to:

f ( u ) = 7 u 6 ( u 2 36 7 u + 45 7 ) f'(u)=7u^6(u^2-\frac{36}{7}u+\frac{45}{7})

u u can't be 0 0 because of the restrictions on the interval. This results to a simple quadratic equation:

u 2 36 7 u + 45 7 u^2-\frac{36}{7}u+\frac{45}{7}

We get

u = 15 7 u = 3 u=\frac{15}{7} \wedge u=3

Coming back to our substitution we recognize that u = 3 u=3 is not in the given intervall, thus:

15 7 = x 2 < = > x = 29 7 \frac{15}{7}=x-2 <=> \boxed{x=\frac{29}{7}}

Use the concept of maxima and minima to find the answer

Charley Shi
Sep 13, 2018

Let the function be f ( x ) f(x) , so that f ( x ) = ( 5 x ) 2 ( x 2 ) 5 f(x)=(5-x)^2(x-2)^5 .

Differentiating using the product rule and chain rule gives:

f ( x ) = 5 ( x 2 ) 4 ( 5 x ) 2 2 ( 5 x ) ( x 2 ) 5 f'(x)=5(x-2)^4(5-x)^2-2(5-x)(x-2)^5

Setting f ( x ) = 0 f'(x)=0 to find maximum value:

5 ( x 2 ) 4 ( 5 x ) 2 2 ( 5 x ) ( x 2 ) 5 = 0 5(x-2)^4(5-x)^2-2(5-x)(x-2)^5=0

5 ( x 2 ) 4 ( 5 x ) 2 = 2 ( 5 x ) ( x 2 ) 5 5(x-2)^4(5-x)^2=2(5-x)(x-2)^5

Simplifying:

5 ( 5 x ) = 2 ( x 2 ) 5(5-x)=2(x-2)

25 5 x = 2 x 4 25-5x=2x-4

7 x = 29 7x=29

x = 29 / 7 x=29/7

Comparing with x = a / b : a = 29 ; b = 7 x=a/b: a=29 ; b=7

Therefore, a b = 29 × 7 = 203 ab=29×7=203

On a side note, you should state that a and b are positive coprime integers, or else they can be any two numbers which when a divided by b gives 29/7.

Michael Mendrin
Sep 13, 2018

Differentiate as follows:

d d x ( ( 5 x ) 2 ( x 2 ) 5 ) = \dfrac{d}{dx}\left((5-x)^2(x-2)^5\right)=

2 ( 5 x ) ( x 2 ) 5 + ( 5 x ) 2 5 ( x 2 ) 4 = -2(5-x)(x-2)^5 + (5-x)^2 5(x-2)^4 =

( 5 x ) ( x 2 ) 4 ( 7 x 29 ) (5-x)(x-2)^4(7x-29)

so solving for x x in

7 x 29 = 0 7x-29=0

gets us x = 29 7 x=\dfrac{29}{7}

Chew-Seong Cheong
Sep 13, 2018

Similar solution with @Shivang Jindal 's but different presentation.

Since 5 x > 0 5-x > 0 and x 2 > 0 x-2 > 0 for 2 < x < 5 2< x < 5 , we can apply AM-GM inequality as follows:

5 x 2 + 5 x 2 + x 2 5 + x 2 5 + x 2 5 + x 2 5 + x 2 5 + x 2 5 7 ( 5 x 2 ) 2 ( x 2 5 ) 5 7 \begin{aligned} \frac {5-x}2 + \frac {5-x}2 + \frac {x-2}5 + \frac {x-2}5 + \frac {x-2}5 + \frac {x-2}5 + \frac {x-2}5 + \frac {x-2}5 & \ge 7 \sqrt[7]{\left(\frac {5-x}2 \right)^2 \left( \frac {x-2}5\right)^5} \end{aligned}

Equality occurs when 5 x 2 = x 2 5 \dfrac {5-x}2 = \dfrac {x-2}5 or x = 29 7 x = \dfrac {29}7 . Therefore a b = 29 × 7 = 203 ab = 29 \times 7 = \boxed{203} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...