a recursion of averages

Algebra Level 4

let us define continued average of n numbers as A v g x 1 , x 2 . . . . . , x n = A v g x 1 , x 2 . . . . . , x n 1 + x n 2 Avg_{x_1,x_2.....,x_n}=\dfrac{Avg_{x_1,x_2.....,x_{n-1}}+x_n}{2} with A v g x 1 = x 1 Avg_{x_1}=x_1

let us define the average as: A x 1 , x 2 . . . . , x n = x 1 + x 2 + . . . + x n n A_{x_1,x_2....,x_n}=\dfrac{x_1+x_2+...+x_n}{n} find the condition for A x 1 , x 2 . . . . , x n = A v g x 1 , x 2 . . . . . , x n , n 3 A_{x_1,x_2....,x_n}=Avg_{x_1,x_2.....,x_n},n\geq 3 \begin{array}{10} (i) & 2^{n-1}(x_1+x_2+....+x_n)&=n(x_1+2x_2+...2^{n-1}x_n)\\ (ii)&2^n(x_1+x_2+....+x_n)&=n(2x_1+2x_2+...+2x_n)\\ (iii)& x_1+x_2+....+x_n&=0\\ (iv)& x_1+x_2+...+x_n&=n \end{array}

ii i iv iii

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Prince Loomba
Jan 25, 2016

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...