Continued differentiation

Calculus Level 4

a 2 n x n 1 / 2 \large \frac{a}{2^n x^{n - 1/2}}

Suppose we differentiate the function f ( x ) = x f(x) = \sqrt x many times, prove that the n th n^\text{th} derivative of f ( x ) f(x) can be stated as the expression above.

Give the last three digits for the value for a a , when n = 20 n = 20 .

Details and Assumptions : As an explicit example, if a = 123456 a = - 123456 , then submit your answer as 456; if a = 654321 a = 654321 , then submit your answer as 321.


The answer is 375.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

d n d x n x = 1 2 ( 1 2 ) ( 3 2 ) ( 5 2 ) ( 2 n 3 2 ) 1 x n 1 / 2 = ( 1 ) n + 1 ( 2 n 3 ) ! ! 2 n x n 1 / 2 a = ( 1 ) n + 1 ( 2 n 3 ) ! ! \begin{aligned} \frac {d^n}{dx^n} \sqrt x & = \frac 12\left(-\frac 12\right) \left(-\frac 32\right) \left(-\frac 52\right) \cdots \left(-\frac {2n-3}2\right) \frac 1{x^{n-1/2}} \\ & = \frac {(-1)^{n+1}(2n-3)!!}{2^nx^{n-1/2}} \\ \implies a & = (-1)^{n+1} (2n-3)!! \end{aligned}

For n = 20 n=20 , a = 37 ! ! a = -37!! and we need to find 37 ! ! m o d 1000 37!! \bmod 1000 . We note that 37 ! ! m o d 5 3 = 0 37!! \bmod 5^3 = 0 and we need to find 37 ! ! m o d 2 3 37!! \bmod 2^3 .

37 ! ! 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 (mod 8) 1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 (mod 8) 1 15 7 1 15 7 1 15 7 1 15 7 1 15 (mod 8) 1 ( 1 ) ( 1 ) = 1 1 ( 1 ) ( 1 ) = 1 1 ( 1 ) ( 1 ) = 1 1 ( 1 ) ( 1 ) = 1 1 ( 1 ) (mod 8) 1 (mod 8) \begin{aligned} 37!! & \equiv 1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 15 \cdot 17 \cdot 19 \cdot 21 \cdot 23 \cdot 25 \cdot 27 \cdot 29 \cdot 31 \cdot 33 \cdot 35 \cdot 37 \text{ (mod 8)} \\ & \equiv 1 \cdot {\color{#3D99F6}3 \cdot 5} \cdot {\color{#D61F06}7} \cdot 1 \cdot {\color{#3D99F6}3 \cdot 5} \cdot {\color{#D61F06}7} \cdot 1 \cdot {\color{#3D99F6}3 \cdot 5} \cdot {\color{#D61F06}7} \cdot 1 \cdot {\color{#3D99F6}3 \cdot 5} \cdot {\color{#D61F06}7} \cdot 1 \cdot {\color{#3D99F6}3 \cdot 5} \text{ (mod 8)} \\ & \equiv 1 \cdot {\color{#3D99F6}15} \cdot {\color{#D61F06}7} \cdot 1 \cdot {\color{#3D99F6}15} \cdot {\color{#D61F06}7} \cdot 1 \cdot {\color{#3D99F6}15} \cdot {\color{#D61F06}7} \cdot 1 \cdot {\color{#3D99F6}15} \cdot {\color{#D61F06}7} \cdot 1 \cdot {\color{#3D99F6}15} \text{ (mod 8)} \\ & \equiv \underbrace{1 {\color{#3D99F6}(-1)} {\color{#D61F06}(-1)}}_{=1} \underbrace{1 {\color{#3D99F6}(-1)} {\color{#D61F06}(-1)}}_{=1} \underbrace{1 {\color{#3D99F6}(-1)} {\color{#D61F06}(-1)}}_{=1} \underbrace{1 {\color{#3D99F6}(-1)} {\color{#D61F06}(-1)}}_{=1} 1 {\color{#3D99F6}(-1)} \text{ (mod 8)} \\ & \equiv - 1 \text{ (mod 8)} \end{aligned}

Therefore, 37 ! ! 8 n 1 37!! \equiv 8 n - 1 , where n n is an integer. And

8 n 1 0 (mod 5 3 ) 8 n 1 (mod 125) n 47 37 ! ! 8 47 1 375 (mod 1000) \begin{aligned} 8n - 1 & \equiv 0 \text{ (mod }5^3) \\ 8n & \equiv 1 \text{ (mod 125)} \\ \implies n & \equiv 47 \\ \implies 37!! & \equiv 8*47 - 1 \equiv \boxed{375} \text{ (mod 1000)} \end{aligned}

Sir There is typo , it should be 375 (final step)

Naren Bhandari - 2 years, 8 months ago

Log in to reply

Thanks. I have amended it.

Chew-Seong Cheong - 2 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...