Continued fraction (2020)

A = 2 + 1 6 + 1 10 + 1 14 + 1 \large A = 2 + \frac{1}{6 + \frac{1}{10 + \frac{1}{14 + \frac{1}{\ldots}}}}

A A can be written as e a + b e c d \dfrac{e^{a} + b}{e^{c} - d} , where a a , b b , c c , and d d are positive integers. Enter 4 a + 3 b + 2 c + d 4a + 3b + 2c + d .

Notation: e 2.718 e \approx 2.718 denotes the Euler's number .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Guilherme Niedu
Mar 6, 2020

The Continued fraction for e x e^x , found in The Application of Continued Fractions and Their Generalizations to Problems in Approximation Theory by A. N. Khovanskii (1963), pg 114, is:

e x = 1 + 2 x 2 x + x 2 6 + x 2 10 + x 2 14 + \large \displaystyle e^x = 1 + \frac{2x}{2-x + \frac{x^2}{6 + \frac{x^2}{10 + \frac{x^2}{14 + \ddots}}}}

So:

e = 1 + 2 1 + 1 6 + 1 10 + 1 14 + \large \displaystyle e = 1 + \frac{2}{1 + \frac{1}{6 + \frac{1}{10 + \frac{1}{14 + \ddots}}}}

Let us call:

B 1 6 + 1 10 + 1 14 + \large \displaystyle B \doteq \frac{1}{6 + \frac{1}{10 + \frac{1}{14 + \ddots}}}

So:

e = 1 + 2 1 + B \large \displaystyle e = 1 +\frac{2}{1+B}

B = 3 e e 1 \color{#20A900} \boxed{ \large \displaystyle B =\frac{3-e}{e-1} }

But, also:

A = 2 + B \large \displaystyle A = 2 + B

So:

A = e + 1 e 1 \color{#20A900} \boxed{ \large \displaystyle A =\frac{e+1}{e-1} }

Thus:

a = b = c = d = 1 4 a + 3 b + 2 c + d = 10 \color{#3D99F6} \large \displaystyle a=b=c=d=1 \rightarrow \boxed{\large \displaystyle 4a+3b+2c+d = 10}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...