Continued fractions or continued fun?

Algebra Level 4

1 3 + 1 2 + 1 1 + 1 3 + 1 2 + 1 1 + 1 \large \cfrac{1}{3 + \cfrac{1}{2 + \cfrac{1}{1 + \cfrac{1}{3 + \cfrac{1}{2 + \cfrac{1}{1 + \cfrac{1}{\ddots }}}}}}}

Evaluate the infinitely nested function above. Give your answer to 3 decimal places.

Clarification : The 3 , 2 , 1 , 3 , 2 , 1 , 3 , 2 , 1 , 3,2,1,3,2,1,3,2,1,\ldots pattern in repeating.


The answer is 0.29753.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akhil Bansal
Dec 10, 2015

Let x \color{#3D99F6}{x} be equal to the given expression.

x = 1 3 + 1 2 + 1 1 + x \large \color{#3D99F6}{x}= \cfrac{1}{3 + \cfrac{1}{2 + \cfrac{1}{1 + \color{#3D99F6}{x}}}} x = 1 3 + 1 + x 3 + 2 x \large \color{#3D99F6}{x}= \cfrac{1}{3 + \cfrac{1+\color{#3D99F6}{x}}{3 + 2\color{#3D99F6}{x}}} x = 3 + 2 x 10 + 7 x \large \color{#3D99F6}{x} = \dfrac{3 + 2\color{#3D99F6}{x}}{10 + 7\color{#3D99F6}{x}} 7 x 2 + 8 x 3 = 0 \large 7\color{#3D99F6}{x}^2 + 8\color{#3D99F6}{x} - 3 = 0

By the Quadratic Formula , x = 0.298 , 1.440 \large \color{#3D99F6}{x} = 0.298,-1.440 Because given expression constains only positive terms.Hence,neglecting 1.440 -1.440

I divided by a instead of 2a.. sad

Nanda Rahsyad - 5 years, 6 months ago

I didnt get how you got 3+2x in the third line

Mr Yovan - 5 years, 6 months ago

Log in to reply

Just take the L.C.M
2 + 1 1 + x = 2 ( 1 + x ) + 1 1 + x = 3 + 2 x 1 + x 2 + \dfrac{1}{1+x} = \dfrac{2(1+x) + 1}{1+x} = \dfrac{3+2x}{1+x}

Akhil Bansal - 5 years, 6 months ago

Also can 1/(1/(1/x-3)-2)-1=x so 1/(x/(1-3x)-2)-1=x (1-3x)/(7x-2)-1=x 3-10x=7x²-2x So 7x²+8x-3=0 Positive solution is x=(-4+√37)/7~0.298

Nikola Djuric - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...