Continued root problem

Algebra Level 4

Find the value of the continued root

√(4 + 27√(4 + 29√(4 + 31√(4 + 33√.....


The answer is 29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

a = 4 + ( a 2 4 ) = 4 + ( a 2 ) ( a + 2 ) = 4 + ( a 2 ) ( a + 2 ) 2 = 4 + ( a 2 ) 4 + ( ( a + 2 ) 2 4 ) = 4 + ( a 2 ) 4 + a ( a + 4 ) = 4 + ( a 2 ) 4 + a ( a + 4 ) 2 = 4 + ( a 2 ) 4 + a 4 + ( a + 2 ) 4 + ( a + 4 ) The given expression is, = 4 + 27 4 + 29 4 + 31 4 + 33 On comparing we get, ( a 2 ) = 27 a = 29 \begin{aligned}a&=\sqrt{4+(a^2-4)}\\ &=\sqrt{4+(a-2)(a+2)}\\ &=\sqrt{4+(a-2)\sqrt{(a+2)^2}}\\ &=\sqrt{4+(a-2)\sqrt{4+((a+2)^2-4)}}\\ &=\sqrt{4+(a-2)\sqrt{4+a(a+4)}}\\ &=\sqrt{4+(a-2)\sqrt{4+a \sqrt{(a+4)^2}}}\\ &=\sqrt{4+(a-2)\sqrt{4+a \sqrt{4+(a+2)\sqrt{4+(a+4)\sqrt{\cdots}}}}}\\\\ &\text{The given expression is,}\\ &=\sqrt{4+27\sqrt{4+29 \sqrt{4+31\sqrt{4+33\sqrt{\cdots}}}}}\\\\ &\text{On comparing we get,}\\ (a-2)&=27\\ \implies a&=\color{#EC7300}\boxed{\color{#333333}29}\end{aligned}

Fantastic way to solve. U have thoroughly generalized the equation.

Arka Dutta - 2 years, 2 months ago

Log in to reply

I did the same way........ @Arka Dutta What was your approach???

Aaghaz Mahajan - 2 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...