Contorno of the day

Calculus Level 3

π π 1 1 + 3 cos 2 t d t \large \int_{-\pi}^{\pi} \dfrac1{1+ 3\cos^2 t } \, dt

The integral above has a closed form. Find the value of this closed form.

Give your answer to 3 decimal places


The answer is 3.14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sam Bealing
May 22, 2016

sin 2 x + cos 2 t = 1 1 + tan 2 t = sec 2 t \sin^2{x}+\cos^2{t}=1 \Rightarrow 1+\tan^2{t}=\sec^2{t}

By symettry of cos 2 x \cos^2{x} :

π π 1 1 + 3 c o s 2 t d t = 4 π 2 π 1 1 + 3 c o s 2 t = 4 π 2 π sec 2 t 1 3 + sec 2 t d t = 4 π 2 π sec 2 t 1 4 + tan 2 t d t \int_{-\pi}^{\pi} \dfrac{1}{1+3 cos^2{t}} \; dt=4 \int_{\frac{\pi}{2}}^{\pi} \dfrac{1}{1+3 cos^2{t}}=4 \int_{\frac{\pi}{2}}^{\pi} \sec^2{t} \dfrac{1}{3+\sec^2{t}} \; dt=4 \int_{\frac{\pi}{2}}^{\pi} \sec^2{t} \dfrac{1}{4+\tan^2{t}} \; dt

Use the substitution u = tan t 2 2 d u = sec 2 t d t u= \dfrac{\tan{t}}{2} \Rightarrow 2 du=\sec^2{t} \; dt :

= π 2 π sec 2 t 1 1 + ( tan t 2 ) 2 d t = 2 0 1 1 + u 2 d u \cdots=\int_{\frac{\pi}{2}}^{\pi} \sec^2{t} \dfrac{1}{1+\left (\dfrac{\tan{t}}{2} \right)^2} \; dt=2 \int_{0}^{\infty} \dfrac{1}{1+u^2} \; du

= 2 [ arctan u ] 0 = 2 ( π 2 0 ) = π \cdots= 2 \left [\arctan{u} \right]_{0}^{\infty}=2 \left (\dfrac{\pi}{2}-0 \right) =\boxed{\pi}

Moderator note:

Simple standard approach.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...