Contour integral (1)

Calculus Level 3

0 π d θ 6 + 4 cos θ = ? \large \int_{0}^{\pi} \dfrac{\text{d}\theta}{6+4\cos\theta} = \ ?

For more problems on contour integrals click here.


The answer is 0.702.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 11, 2017

By Contour Integration

I = 0 π d θ 6 + 4 cos θ Since the integral is even = 1 2 0 2 π d θ 6 + 4 cos θ Using unit circle contour = 1 4 0 2 π d θ 3 + 2 cos θ Let z = e i θ d z = i e i θ d θ = 1 4 d z i z ( 3 + z + 1 z ) = 1 4 i d z z 2 + 3 z + 1 = 1 4 i d z ( z + 3 5 2 ) ( z + 3 + 5 2 ) Only the pole z 3 + 5 2 is in the circle. = 2 π i 4 i 1 3 + 5 2 + 3 + 5 2 By residue theorem = π 2 5 0.702 \begin{aligned} I & = \int_0^{\color{#3D99F6}\pi} \frac {d\theta}{6+4\cos \theta} & \small \color{#3D99F6} \text{Since the integral is even} \\ & = \frac 1{\color{#3D99F6}2} \int_0^{\color{#3D99F6}2\pi} \frac {d\theta}{6+4\cos \theta} & \small \color{#3D99F6} \text{Using unit circle contour} \\ & = \frac 14 \int_0^{2\pi} \frac {d\theta}{3+2\cos \theta} & \small \color{#3D99F6} \text{Let }z=e^{i\theta} \implies dz = ie^{i\theta} \ d \theta \\ & = \frac 14 \oint \frac {dz}{iz\left(3+z+\frac 1z\right)} \\ & = \frac 1{4i} \oint \frac {dz}{z^2+3z+1} \\ & = \frac 1{4i} \oint \frac {dz}{\left(z+\frac {3-\sqrt 5}2\right)\left(z+\frac {3+\sqrt 5}2\right)} & \small \color{#3D99F6} \text{Only the pole } z- \frac {-3+\sqrt 5}2 \text{ is in the circle.} \\ & = \frac {2\pi i}{4i} \cdot \frac 1{\frac {-3+\sqrt 5}2+\frac {3+\sqrt 5}2} & \small \color{#3D99F6} \text{By residue theorem} \\ & = \frac \pi{2\sqrt 5} \approx \boxed{0.702} \end{aligned}


Alternative solution

I = 0 π d θ 6 + 4 cos θ Using tangent half-angle substitution and = 0 2 d t ( 6 + 4 ( 1 t 2 1 + t 2 ) ) ( t 2 + 1 ) let t = tan θ 2 d t = 1 2 sec 2 θ 2 d θ = 0 d t 5 + t 2 = 1 5 0 d t 1 + ( t 5 ) 2 Let u = t 5 5 d u = d t = 1 5 0 d u 1 + u 2 = 1 5 [ tan 1 u ] 0 = π 2 5 0.702 \begin{aligned} I & = \int_0^\pi \frac {d\theta}{6+4\cos \theta} & \small \color{#3D99F6} \text{Using tangent half-angle substitution and} \\ & = \int_0^\infty \frac {2 \ dt}{\left(6+4\left(\frac {1-t^2}{1+t^2} \right) \right)(t^2+1)} & \small \color{#3D99F6} \text{let }t = \tan \frac \theta 2 \implies dt = \frac 12 \sec^2 \frac \theta 2 d \theta \\ & = \int_0^\infty \frac {dt}{5+t^2} \\ & = \frac 15 \int_0^\infty \frac {dt}{1+\left(\frac t{\sqrt 5}\right)^2} & \small \color{#3D99F6} \text{Let }u = \frac t{\sqrt 5} \implies \sqrt 5 du = dt \\ & = \frac 1{\sqrt 5} \int_0^\infty \frac {du}{1+u^2} \\ & = \frac 1{\sqrt 5} \bigg[\tan^{-1} u \bigg]_0^\infty \\ & = \frac \pi {2\sqrt 5} \approx \boxed{0.702} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...