Contour integral (2)

Calculus Level 3

0 2 π sin 2 θ d θ 5 4 cos θ = ? \large \int_{0}^{2\pi} \dfrac{\sin^2\theta\text{ d}\theta}{5-4\cos\theta} = \ ?

For more problems on contour integrals click here.


The answer is 0.7853.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 11, 2017

I = 0 2 π sin 2 θ 5 4 cos θ d θ = 0 π sin 2 θ 5 4 cos θ d θ + π 2 π sin 2 θ 5 4 cos θ d θ = 0 π sin 2 θ 5 4 cos θ d θ + 0 π sin 2 ( θ + π ) 5 4 cos ( θ + π ) d ( θ + π ) = 0 π sin 2 θ 5 4 cos θ d θ + 0 π sin 2 θ 5 + 4 cos θ d θ = 0 π 10 sin 2 θ 25 16 cos 2 θ d θ Divide up and down by cos 2 θ = 10 0 π tan 2 θ 25 sec 2 θ 16 d θ Since the integral is symmetrical at θ = π 2 = 20 0 π 2 tan 2 θ 25 tan 2 θ + 9 d θ Let t = tan θ d t = sec 2 θ d θ = 20 0 t 2 ( 25 t 2 + 9 ) ( t 2 + 1 ) d t By partial fractions = 20 16 0 ( 1 t 2 + 1 9 25 t 2 + 9 ) d t = 5 4 [ tan 1 t 3 5 tan 1 5 3 t ] 0 = π 4 0.7853 \begin{aligned} I & = \int_0^{2\pi} \frac {\sin^2 \theta}{5-4\cos \theta} d \theta \\ & = \int_0^\pi \frac {\sin^2 \theta}{5-4\cos \theta} d \theta + \int_{\color{#3D99F6}\pi}^{\color{#3D99F6}2\pi} \frac {\sin^2 \color{#3D99F6}\theta}{5-4\cos \color{#3D99F6}\theta} d \color{#3D99F6}\theta \\ & = \int_0^\pi \frac {\sin^2 \theta}{5-4\cos \theta} d \theta + \int_{\color{#D61F06}0}^{\color{#D61F06}\pi} \frac {\sin^2 \color{#D61F06}(\theta+\pi)}{5-4\cos \color{#D61F06}(\theta+\pi)} d \color{#D61F06}(\theta+\pi) \\ & = \int_0^\pi \frac {\sin^2 \theta}{5-4\cos \theta} d \theta + \int_0^\pi \frac {\sin^2 \theta}{5+4\cos \theta} d \theta \\ & = \int_0^\pi \frac {10\sin^2 \theta}{25-16\cos^2 \theta} d \theta & \small \color{#3D99F6} \text{Divide up and down by }\cos^2 \theta \\ & = {\color{#3D99F6}10} \int_{\color{#3D99F6}0}^{\color{#3D99F6}\pi} \frac {\tan^2 \theta}{25\sec^2 \theta -16} d \theta & \small \color{#3D99F6} \text{Since the integral is symmetrical at }\theta = \frac \pi 2 \\ & = {\color{#D61F06} 20} \int_{\color{#D61F06}0}^{\color{#D61F06}\frac \pi 2} \frac {\tan^2 \theta}{25\tan^2 \theta +9} d \theta & \small \color{#3D99F6} \text{Let }t = \tan \theta \implies dt = \sec^2 \theta \ d \theta \\ & = 20 \int_0^\infty \frac {t^2}{(25t^2+9)(t^2+1)} dt & \small \color{#3D99F6} \text{By partial fractions} \\ & = \frac {20}{16} \int_0^\infty \left(\frac 1{t^2+1} - \frac 9{25t^2+9} \right) dt \\ & = \frac 54 \left[\tan^{-1} t - \frac 35 \tan^{-1} \frac 53 t \right]_0^\infty \\ & = \frac \pi 4 \approx \boxed{0.7853} \end{aligned}

What's the Idea, for the expression at line 7 tu be line 8? @Chew-Seong Cheong

Muhammad Alif - 2 years, 6 months ago

Log in to reply

You mean d t = sec 2 θ d θ d θ = d t sec 2 θ = d t tan 2 θ + 1 = d t t 2 + 1 dt = \sec^2 \theta \ d\theta \implies d\theta = \dfrac {d t}{\sec^2 \theta} = \dfrac {dt}{\tan^2 \theta+1} = \dfrac {dt}{t^2+1} .

Chew-Seong Cheong - 2 years, 6 months ago
Rajdeep Ghosh
Jul 20, 2017

This is the solution to Contour Integral 1. I got it wrong on my first attempt, but later found a way of solving.

This problem can be solved similarly. Use the Weierstrass Substitution,i.e-replace the trigonometric denominator with a t a n θ 2 tan\frac{\theta}{2} equivalent and then make the substitution u = t a n θ 2 u= tan\frac{\theta}{2} . It is easy from there.

This is not contour integral BTW. But you method is almost correct.

Sahil Silare - 3 years, 10 months ago

Log in to reply

I thought contour integral was just a fancy name for a tough integral. Is there any other meaning?

Rajdeep Ghosh - 3 years, 10 months ago

Log in to reply

Yes you can search on the internet about that.

Sahil Silare - 3 years, 10 months ago

What you've done is Weierstrass substitution and u substitution.

Sahil Silare - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...