Contour integral (3)

Calculus Level 3

0 2 π ( sin 2 θ 2 cos θ ) d θ 2 + cos θ = ? \large \int_{0}^{2\pi} \dfrac{(\sin^2\theta -2\cos\theta)\text{ d}\theta}{2+\cos\theta} = \ ?

For more problems on contour integrals click here.


The answer is 3.6275.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 11, 2017

I = 0 2 π sin 2 θ 2 cos θ 2 + cos θ d θ = 0 π sin 2 θ 2 cos θ 2 + cos θ d θ + π 2 π sin 2 θ 2 cos θ 2 + cos θ d θ = 0 π sin 2 θ 2 cos θ 2 + cos θ d θ + 0 π sin 2 ( θ + π ) 2 cos ( θ + π ) 2 + cos ( θ + π ) d ( θ + π ) = 0 π sin 2 θ 2 cos θ 2 + cos θ d θ + 0 π sin 2 θ + 2 cos θ 2 cos θ d θ \begin{aligned} I & = \int_0^{2\pi} \frac {\sin^2 \theta - 2\cos \theta}{2+\cos \theta} d \theta \\ & = \int_0^\pi \frac {\sin^2 \theta - 2\cos \theta}{2+\cos \theta} d \theta + \int_{\color{#3D99F6}\pi}^{\color{#3D99F6}2\pi} \frac {\sin^2 {\color{#3D99F6}\theta} - 2\cos {\color{#3D99F6}\theta}}{2+\cos {\color{#3D99F6}\theta}} d {\color{#3D99F6}\theta} \\ & = \int_0^\pi \frac {\sin^2 \theta - 2\cos \theta}{2+\cos \theta} d \theta + \int_{\color{#D61F06}0}^{\color{#D61F06}\pi} \frac {\sin^2 {\color{#D61F06}(\theta+\pi)} - 2\cos {\color{#D61F06}(\theta+\pi)}}{2+\cos {\color{#D61F06}(\theta+\pi)}} d {\color{#D61F06}(\theta+\pi)} \\ & = \int_0^\pi \frac {\sin^2 \theta - 2\cos \theta}{2+\cos \theta} d \theta + \int_0^\pi \frac {\sin^2 \theta + 2\cos \theta}{2-\cos \theta} d \theta \end{aligned}

= 0 π 4 sin 2 θ + 4 cos 2 θ ( 2 + cos θ ) ( 2 cos θ ) d θ = 0 π 4 d θ 4 cos 2 θ Multiply up and down by sec 2 θ = 4 0 π sec 2 θ d θ 4 sec 2 θ 1 = 4 0 π sec 2 θ d θ 4 tan 2 θ + 3 Since the integral is symmetrical at θ = π 2 = 8 0 π 2 sec 2 θ d θ 4 tan 2 θ + 3 Let t = tan θ d t = sec 2 θ d θ = 8 0 d t 4 t 2 + 3 = 8 3 0 d t ( 2 t 3 ) 2 + 1 Let u = 2 t 3 d u = 2 3 d t = 4 3 0 d u u 2 + 1 = 4 3 [ tan 1 u ] 0 = 2 π 3 3.628 \begin{aligned} \ \ & = \int_0^\pi \frac {4\sin^2 \theta + 4\cos^2 \theta}{(2+\cos \theta)(2-\cos \theta)} d \theta \\ & = \int_0^\pi \frac {4 \ d \theta}{4-\cos^2 \theta} & \small \color{#3D99F6} \text{Multiply up and down by }\sec^2 \theta \\ & = 4 \int_0^\pi \frac {\sec^2 \theta \ d \theta }{4\sec^2 \theta -1} \\ & = 4\int_{\color{#3D99F6}0}^{\color{#3D99F6}\pi} \frac {\sec^2 \theta \ d \theta }{4\tan^2 \theta +3} & \small \color{#3D99F6} \text{Since the integral is symmetrical at }\theta = \frac \pi 2 \\ & = {\color{#D61F06}8} \int_{\color{#D61F06}0} ^{\color{#D61F06} \frac \pi 2} \frac {\sec^2 \theta \ d \theta }{4\tan^2 \theta +3} & \small \color{#3D99F6} \text{Let }t = \tan \theta \implies dt = \sec^2 \theta \ d \theta \\ & = 8 \int_0^\infty \frac {dt}{4t^2+3} \\ & = \frac 83 \int_0^\infty \frac {dt}{\left(\frac {2t}{\sqrt 3}\right)^2+1} & \small \color{#3D99F6} \text{Let }u = \frac {2t}{\sqrt 3} \implies du = \frac 2{\sqrt 3}dt \\ & = \frac 4{\sqrt 3} \int_0^\infty \frac {du}{u^2+1} \\ & = \frac 4{\sqrt 3} \bigg[\tan^{-1} u \bigg]_0^\infty \\ & = \frac {2\pi}{\sqrt 3} \approx \boxed{3.628} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...