Conundrum #2

Calculus Level 2

If f ( x ) = sin ( log x ) f'(x) = \sin (\log x) and y = f ( 2 x + 3 3 2 x ) y = f \left(\dfrac {2x+3}{3-2x}\right) , what is d y d x \dfrac {dy}{dx} at x = 1 x=1 ?

6 sin ( log 5 ) 6 \sin (\log 5) 12 sin ( log 5 ) 12 \sin (\log 5) 5 sin ( log 12 ) 5 \sin (\log 12) 5 sin ( log 6 ) 5 \sin (\log 6)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Arjen Vreugdenhil
Dec 12, 2017

We have y = f ( g ( x ) ) with g ( x ) = 2 x + 3 3 2 x . y = f(g(x))\ \ \ \ \ \ \ \text{with}\ \ g(x) = \frac{2x+3}{3-2x}. It is easy to see that g ( 1 ) = 5 g(1) = 5 . The derivative of g g is g ( x ) = 2 ( 3 2 x ) ( 2 ) ( 2 x + 3 ) ( 3 2 x ) 2 ; g ( 1 ) = 2 1 + 2 5 1 2 = 12. g'(x) = \frac{2(3-2x)-(-2)(2x+3)}{(3-2x)^2};\ \ \ \ g'(1) = \frac{2\cdot 1 + 2 \cdot 5}{1^2} = 12. According to the chain rule, d y d x x = 1 = f ( g ( x ) ) g ( x ) x = 1 = sin ( log g ( 1 ) ) g ( 1 ) = sin ( log 5 ) 12. \left.\frac{dy}{dx}\right|_{x=1} = \left.f'(g(x))\cdot g'(x)\right|_{x=1} = \sin(\log g(1))\cdot g'(1) = \sin(\log 5)\cdot 12. The correct answer is therefore C \boxed{\mathbf C} .

Chew-Seong Cheong
Dec 20, 2017

y = f ( 2 x + 3 3 2 x ) d y d x x = 1 = f ( 2 x + 3 3 2 x ) d d x ( 2 x + 3 3 2 x ) x = 1 = sin ( log 2 x + 3 3 2 x ) ( 2 ( 3 2 x ) + 2 ( 2 x + 3 ) ( 3 2 x ) 2 ) x = 1 = sin ( log 5 1 ) ( 2 + 2 ( 5 ) 1 2 ) = 12 sin ( log 5 ) \begin{aligned} y & = f \left(\frac {2x+3}{3-2x} \right) \\ \frac {dy}{dx}\bigg|_{x=1} & = f '\left(\frac {2x+3}{3-2x} \right)\cdot \frac d{dx}\left(\frac {2x+3}{3-2x} \right)\bigg|_{x=1} \\ & = \sin \left(\log \frac {2x+3}{3-2x} \right) \left(\frac {2(3-2x) + 2(2x+3)}{(3-2x)^2} \right)\bigg|_{x=1} \\ & = \sin \left(\log \frac 51 \right) \left(\frac {2 + 2(5)}{1^2} \right) \\ & = \boxed{12 \sin (\log 5)} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...