Convergence (1)

Calculus Level 4

n = 1 m n ( ( 500 n ) ! ) 2 ( 1000 n ) ! \sum_{n=1}^{\infty}{\dfrac{m^n((500n)!)^2}{(1000n)!}} If the series above is to converge, we must have m < a |m| < a . If a a is of the form s r s^r , where s s is a prime number, find s + r s+r .


The answer is 1002.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akeel Howell
Apr 12, 2017

Relevant wiki: Convergence - Ratio Test

The question asks about the convergence of n = 1 m n ( ( 500 n ) ! ) 2 ( 1000 n ) ! \displaystyle\sum_{n=1}^{\infty}{\dfrac{m^n((500n)!)^2}{(1000n)!}} so we can proceed by the ratio test. lim n m n + 1 ( ( 500 n + 500 ) ! ) 2 ( 1000 n ) ! m n ( ( 500 n ) ! ) 2 ( 1000 n + 1000 ) ! = m lim n ( ( 500 n + 1 ) × ( 500 n + 2 ) × ( 500 n + 3 ) × × ( 500 n + 500 ) ) 2 ( 1000 n + 1 ) × ( 1000 n + 2 ) × ( 1000 n + 3 ) × × ( 1000 n + 1000 ) \lim_{n \to \infty}{\dfrac{m^{n+1}((500n+500)!)^2(1000n)!}{m^n((500n)!)^2(1000n+1000)!}} \\ = m\lim_{n \to \infty}{\dfrac{((500n+1)\times(500n+2)\times(500n+3)\times\cdots\times(500n+500))^2}{(1000n+1)\times(1000n+2)\times(1000n+3)\times\cdots\times(1000n+1000)}}

Since each factor in the numerator is repeated once, we note that there are 1000 1000 factors in the numerator and the denominator of the fraction. Since lim n k = 1 500 ( 500 n + k ) k = 1 500 ( 1000 n + k ) = 1 2 500 \displaystyle\lim_{n \to \infty}{\large{\dfrac{\prod_{k=1}^{500}{(500n+k)}}{\prod_{k=1}^{500}{(1000n+k)}}}} = \dfrac{1}{2^{500}} we have m 2 500 lim n k = 1 500 ( 500 n + k ) k = 501 1000 ( 1000 n + k ) \dfrac{m}{2^{500}}\lim_{n \to \infty}{\large{\dfrac{\prod_{k=1}^{500}{(500n+k)}}{\prod_{k=501}^{1000}{(1000n+k)}}}}

Once again, since lim n k = 1 500 ( 500 n + k ) k = 501 1000 ( 1000 n + k ) = 1 2 500 \displaystyle\lim_{n \to \infty}{\large{\dfrac{\prod_{k=1}^{500}{(500n+k)}}{\prod_{k=501}^{1000}{(1000n+k)}}}} = \dfrac{1}{2^{500}} we have m 2 500 lim n k = 1 500 ( 500 n + k ) k = 501 1000 ( 1000 n + k ) = m 2 500 × 1 2 500 = m 2 1000 \dfrac{m}{2^{500}}\lim_{n \to \infty}{\large{\dfrac{\prod_{k=1}^{500}{(500n+k)}}{\prod_{k=501}^{1000}{(1000n+k)}}}} = \dfrac{m}{2^{500}}\times\dfrac{1}{2^{500}} = \dfrac{m}{2^{1000}} Since we used a ratio test to determine the convergence of the series, we conclude that since m 2 1000 \dfrac{|m|}{2^{1000}} must be less than 1 1 , then m < 2 1000 m < 2^{1000} .

Hence, s + r = 1000 + 2 = 1002 s+r = 1000+2 = \boxed{1002} .


Furthermore, if we replace 500 500 with k k and 1000 1000 with 2 k 2k we see that a series of the form n = 1 m n ( ( k n ) ! ) 2 ( 2 k n ) ! \displaystyle{\sum_{n=1}^{\infty}{\dfrac{m^n((kn)!)^2}{(2kn)!}}} is convergent if m < 2 2 k |m| < 2^{2k} .

same way...good solution..(+1)!!!!

rajdeep brahma - 2 years, 12 months ago
Chew-Seong Cheong
Apr 12, 2017

Relevant wiki: Convergence - Ratio Test

n = 0 a n = n = 0 m n ( ( 500 n ) ! ) 2 ( 1000 n ) ! Stirling’s formula: n ! 2 π n n + 1 / 2 e n = n = 0 m n 2 π ( 500 n ) 1000 n + 1 ( 1000 n ) 1000 n + 1 / 2 \begin{aligned} \sum_{n=0}^\infty a_n & = \sum_{n=0}^\infty \frac {m^n((500n)!)^2}{(1000n)!} & \small \color{#3D99F6} \text{Stirling's formula: }n! \approx \sqrt {2\pi} n^{n+1/2} e^{-n} \\ & = \sum_{n=0}^\infty \frac {m^n \sqrt {2\pi}(500n)^{1000n+1}}{(1000n)^{1000n+1/2}} \end{aligned}

Consider the ratio text, for the sum to converge, we have L = lim n a n + 1 a n < 1 \displaystyle L = \lim_{n \to \infty} \left| \frac {a_{n+1}}{a_n} \right| < 1 . Therefore,

L = lim n m n + 1 2 π ( 500 ( n + 1 ) ) 1000 ( n + 1 ) + 1 ( 1000 ( n + 1 ) ) 1000 ( n + 1 ) + 1 / 2 ( 1000 n ) 1000 n + 1 / 2 m n 2 π ( 500 n ) 1000 n + 1 = m ( 500 n ) 1000 ( n + 1 ) + 1 ( 1 + 1 n ) 1000 ( n + 1 ) + 1 ( 1000 n ) 1000 n + 1 / 2 ( 1000 n ) 1000 ( n + 1 ) + 1 / 2 ( 1 + 1 n ) 1000 ( n + 1 ) + 1 / 2 ( 500 n ) 1000 n + 1 = m ( 500 n ) 1000 e 1000 ( 1000 n ) 1000 e 1000 = m 2 1000 \begin{aligned} L & = \lim_{n \to \infty} \frac {|m|^{n+1} \sqrt {2\pi}(500(n+1))^{1000(n+1)+1}}{(1000(n+1))^{1000(n+1)+1/2}} \cdot \frac {(1000n)^{1000n+1/2}} {|m|^n \sqrt {2\pi}(500n)^{1000n+1}} \\ & = \frac {|m|(500n)^{1000(n+1)+1}{\color{#3D99F6}\left(1+\frac 1n\right)^{1000(n+1)+1}}(1000n)^{1000n+1/2}}{(1000n)^{1000(n+1)+1/2}{\color{#3D99F6}\left(1+\frac 1n\right)^{1000(n+1)+1/2}}(500n)^{1000n+1}} \\ & = \frac {|m| (500n)^{1000}\color{#3D99F6}e^{1000}}{(1000n)^{1000}\color{#3D99F6}e^{1000}} \\ & = \frac {|m|}{2^{1000}} \end{aligned}

For L < 1 m 2 1000 < 1 m < 2 1000 L < 1 \implies \dfrac {|m|}{2^{1000}} < 1 \implies |m| < 2^{1000} . Therefore, s + r = 2 + 1000 = 1002 s+r = 2+1000 = \boxed{1002} .


References:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...