Convergence (2)

Calculus Level 5

n = 0 1 1 n ( ( k n ) ! ) 2 ( 24 n ) ! \sum_{n = 0}^{\infty}{\dfrac{11^n((kn)!)^2}{(24n)!}} What is the largest possible k k such that the series above converges?


Try Convergence (1) if you thought this problem was fun.


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 12, 2017

n = 0 a n = n = 0 1 1 n ( ( k n ) ! ) 2 ( 24 n ) ! Stirling’s formula: n ! 2 π n n + 1 / 2 e n = n = 0 1 1 n 2 π ( k n ) 2 k n + 1 e 2 k n ( 24 n ) 24 n + 1 / 2 e 24 n \begin{aligned} \sum_{n=0}^\infty a_n & = \sum_{n=0}^\infty \frac {11^n((kn)!)^2}{(24n)!} & \small \color{#3D99F6} \text{Stirling's formula: }n! \approx \sqrt {2\pi} n^{n+1/2} e^{-n} \\ & = \sum_{n=0}^\infty \frac {11^n \sqrt {2\pi} (kn)^{2kn+1}e^{-2kn}}{(24n)^{24n+1/2} e^{-24n}} \end{aligned}

Consider the ratio text, for the sum to converge, we have L = lim n a n + 1 a n < 1 \displaystyle L = \lim_{n \to \infty} \left| \frac {a_{n+1}}{a_n} \right| < 1 . Therefore,

L = lim n 1 1 n + 1 2 π ( k ( n + 1 ) ) 2 k ( n + 1 ) + 1 e 2 k ( n + 1 ) ( 24 ( n + 1 ) ) 24 ( n + 1 ) + 1 / 2 e 24 ( n + 1 ) ( 24 n ) 24 n + 1 / 2 e 24 n 1 1 n 2 π ( k n ) 2 k n + 1 e 2 k n = 11 ( k n ) 2 k e 24 ( 24 n ) 24 e 2 k \begin{aligned} L & = \lim_{n \to \infty} \frac {11^{n+1} \sqrt {2\pi}(k(n+1))^{2k(n+1)+1}e^ {-2k(n+1)}}{(24(n+1))^{24(n+1)+1/2} e^{-24(n+1)}} \cdot \frac {(24n)^{24n+1/2} e^{-24n}}{11^n \sqrt {2\pi}(kn)^{2kn+1}e^{-2kn}} \\ & = \frac {11(kn)^{2k}e^{24}}{(24n)^{24} e^{2k}} \end{aligned}

We note that when k = 13 k=13 , L L \to \infty . For L < 1 L < 1 , the largest k m a x = 12 k_{max} = \boxed{12} .


References:

wonderful solution using basics!!!!(+1)

rajdeep brahma - 2 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...