C o n v e r g e n c e Convergence

Calculus Level 3

If x 2 x + 1 = 0 x^2-x + 1= 0 , for what value is the summation of x n x 2 n + 1 \dfrac{x^n}{x^{2n} + 1} for natural number n n converge?

Details and Assumptions :

C o n v e r g e s Converges in this sentence is like this:

For some value of a a ,

0. a a a a a a a . . . 0.aaaaaaa... c o n v e r g e s converges to 1 1

a + a + a + a + a + a + . . . a+-a+a+-a+a+-a+... c o n v e r g e s converges to 0 0

a + a + a + a + a + a + a + a + . . . a+-a+-a+a+a+-a+-a+a+... c o n v e r g e s converges to 0 0 .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Christian Daang
Jan 16, 2015

Solution:

Summation of x n x 2 n + 1 \frac{x^{n}}{x^{2n} + 1} for n N a t u r a l N u m b e r s n ∈ Natural Numbers > -> Summation of 1 x n + 1 x n \frac{1}{{x^{n}} + \frac{1}{x^{n}}} for n N a t u r a l N u m b e r s n ∈ Natural Numbers

Since n N a t u r a l N u m b e r s n ∈ Natural Numbers ,

From x 2 x + 1 = 0 x^{2} - x + 1 = 0

x + 1 x = 1 x + \frac{1}{x} = 1

x 2 + 1 x 2 = 1 x^{2} + \frac{1}{x^{2}} = -1

x 3 + 1 x 3 = 1 1 = 2 x^{3} + \frac{1}{x^{3}} = -1-1 = -2

x 4 + 1 x 4 = ( 1 ) 2 2 = 1 x^{4} + \frac{1}{x^{4}} = (-1)^{2} - 2 = -1

x 5 + 1 x 5 = 2 1 = 1 x^{5} + \frac{1}{x^{5}} = 2-1 = 1

x 6 + 1 x 6 = ( 2 ) 2 2 = 2 x^{6} + \frac{1}{x^{6}} = (-2)^{2} - 2 = 2

. . . ...

t h e r e f o r e , therefore,

for n = 1 , 2 , 4 , 5 , 7 , 8 , . . . n = 1,2,4,5,7,8,...

x n + 1 x n = 1 , 1 , 1 , 1 , 1 , 1 , . . . x^{n} + \frac{1}{x^{n}} = 1,-1,-1,1,1,-1,... R E M E M B E R : REMEMBER: All values for n has a corresponding values for x + 1 x x + \frac{1}{x}

for n = 3 , 6 , 9 , 12 , 15 , 18 , . . . n = 3,6,9,12,15,18,...

x n + 1 x n = 2 , 2 , 2 , 2 , 2 , 2 , . . . x^{n} + \frac{1}{x^{n}} = -2,2,-2,2,-2,2,... R E M E M B E R : REMEMBER: All values for n has a corresponding values for x + 1 x x + \frac{1}{x}

Then,

Summation of x n x 2 n + 1 \frac{x^{n}}{x^{2n} + 1} for n N a t u r a l N u m b e r s n ∈ Natural Numbers > -> Summation of 1 x n + 1 x n \frac{1}{{x^{n}} + \frac{1}{x^{n}}} for n N a t u r a l N u m b e r s n ∈ Natural Numbers

= 1 1 + 1 1 + 1 2 + 1 1 + 1 1 + 1 2 + . . . \frac{1}{1} + \frac{1}{-1} + \frac{1}{-2} + \frac{1}{-1} + \frac{1}{1} + \frac{1}{2} + ...

= 1 1 + 1 1 + 1 1 + 1 1 + . . . + 1 2 + 1 2 + . . . \frac{1}{1} + \frac{1}{-1} + \frac{1}{-1} + \frac{1}{1} + ... + \frac{1}{-2} + \frac{1}{2} + ...

As noted above, a + a + a + a + a + a + . . . a+-a+a+-a+a+-a+... c o n v e r g e s converges to 0 0 and a + a + a + a + a + a + a + a + . . . a+-a+-a+a+a+-a+-a+a+... c o n v e r g e s converges to 0 0

Therefore,

Summation of x n x 2 n + 1 \frac{x^{n}}{x^{2n} + 1} for n N a t u r a l N u m b e r s n ∈ Natural Numbers > -> Summation of 1 x n + 1 x n \frac{1}{{x^{n}} + \frac{1}{x^{n}}} for n N a t u r a l N u m b e r s n ∈ Natural Numbers

= 1 1 + 1 1 + 1 1 + 1 1 + . . . + 1 2 + 1 2 + . . . \frac{1}{1} + \frac{1}{-1} + \frac{1}{-1} + \frac{1}{1} + ... + \frac{1}{-2} + \frac{1}{2} + ...

= 1 1 + 1 1 + 1 1 + 1 1 + . . . + 1 2 + 1 2 + . . . \frac{1}{1} + \frac{-1}{1} + \frac{-1}{1} + \frac{1}{1} + ... + \frac{-1}{2} + \frac{1}{2} + ... c o n v e r g e s converges to 0 0 . A n s . Ans.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...