If , for what value is the summation of for natural number converge?
Details and Assumptions :
in this sentence is like this:
For some value of ,
to
to
to .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Solution:
Summation of x 2 n + 1 x n for n ∈ N a t u r a l N u m b e r s − > Summation of x n + x n 1 1 for n ∈ N a t u r a l N u m b e r s
Since n ∈ N a t u r a l N u m b e r s ,
From x 2 − x + 1 = 0
x + x 1 = 1
x 2 + x 2 1 = − 1
x 3 + x 3 1 = − 1 − 1 = − 2
x 4 + x 4 1 = ( − 1 ) 2 − 2 = − 1
x 5 + x 5 1 = 2 − 1 = 1
x 6 + x 6 1 = ( − 2 ) 2 − 2 = 2
. . .
t h e r e f o r e ,
for n = 1 , 2 , 4 , 5 , 7 , 8 , . . .
x n + x n 1 = 1 , − 1 , − 1 , 1 , 1 , − 1 , . . . R E M E M B E R : All values for n has a corresponding values for x + x 1
for n = 3 , 6 , 9 , 1 2 , 1 5 , 1 8 , . . .
x n + x n 1 = − 2 , 2 , − 2 , 2 , − 2 , 2 , . . . R E M E M B E R : All values for n has a corresponding values for x + x 1
Then,
Summation of x 2 n + 1 x n for n ∈ N a t u r a l N u m b e r s − > Summation of x n + x n 1 1 for n ∈ N a t u r a l N u m b e r s
= 1 1 + − 1 1 + − 2 1 + − 1 1 + 1 1 + 2 1 + . . .
= 1 1 + − 1 1 + − 1 1 + 1 1 + . . . + − 2 1 + 2 1 + . . .
As noted above, a + − a + a + − a + a + − a + . . . c o n v e r g e s to 0 and a + − a + − a + a + a + − a + − a + a + . . . c o n v e r g e s to 0
Therefore,
Summation of x 2 n + 1 x n for n ∈ N a t u r a l N u m b e r s − > Summation of x n + x n 1 1 for n ∈ N a t u r a l N u m b e r s
= 1 1 + − 1 1 + − 1 1 + 1 1 + . . . + − 2 1 + 2 1 + . . .
= 1 1 + 1 − 1 + 1 − 1 + 1 1 + . . . + 2 − 1 + 2 1 + . . . c o n v e r g e s to 0 . A n s .