Convergence Divergence

Calculus Level 3

Which of the following is false ?

A: n = 1 sin 1 n \quad \displaystyle \sum_{n=1}^{\infty} \sin\dfrac{1}{n} diverges.

B: n = 1 sin 1 n 2 \quad \displaystyle \sum_{n=1}^{\infty} \sin\dfrac{1}{n^2} converges.

C: n = 1 cos 1 n \quad \displaystyle \sum_{n=1}^{\infty} \cos\dfrac{1}{n} diverges.

D: n = 1 cos 1 n 2 \quad \displaystyle \sum_{n=1}^{\infty} \cos\dfrac{1}{n^2} converges.

B D A C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let's use the Limit Comparison test . It says: let n = 1 a n \displaystyle \sum_{n=1}^{\infty} a_n and n = 1 b n \displaystyle \sum_{n=1}^{\infty} b_n be series of positive terms. Then:

  • If lim n a n b n > 0 \displaystyle \lim_{n \to \infty} \dfrac{a_n}{b_n} > 0 and it's finite, n = 1 a n \displaystyle \sum_{n=1}^{\infty} a_n converges if and only if n = 1 b n \displaystyle \sum_{n=1}^{\infty} b_n converges.
  • If lim n a n b n = 0 \displaystyle \lim_{n \to \infty} \dfrac{a_n}{b_n} = 0 and n = 1 b n \displaystyle \sum_{n=1}^{\infty} b_n converges, then n = 1 a n \displaystyle \sum_{n=1}^{\infty} a_n converges.
  • If lim n a n b n = \displaystyle \lim_{n \to \infty} \dfrac{a_n}{b_n} = \infty and n = 1 b n \displaystyle \sum_{n=1}^{\infty} b_n diverges, then n = 1 a n \displaystyle \sum_{n=1}^{\infty} a_n diverges.

Now, let's determine the convergence of each series:

A . Choose the series n = 1 1 n \displaystyle \sum_{n=1}^{\infty} \dfrac{1}{n} because we know that diverges. We have lim n sin 1 n 1 n = lim n 0 sin n n = 1 > 0 \displaystyle \lim_{n \to \infty} \dfrac{\sin \frac{1}{n}}{\frac{1}{n}}=\lim_{n \to 0} \dfrac{\sin n}{n}=1>0 , so this series diverges .

B . Choose the series n = 1 1 n 2 \displaystyle \sum_{n=1}^{\infty} \dfrac{1}{n^2} because we know that converges. We have lim n sin 1 n 2 1 n 2 = lim n 2 n 3 cos 1 n 2 2 n 3 = lim n cos 1 n 2 = 1 > 0 \displaystyle \lim_{n \to \infty} \dfrac{\sin \frac{1}{n^2}}{\frac{1}{n^2}}=\lim_{n \to \infty} \dfrac{-\frac{2}{n^3} \cos \frac{1}{n^2}}{-\frac{2}{n^3}}=\lim_{n \to \infty} \cos \dfrac{1}{n^2}=1>0 , so this series converges .

C . Again choose the series n = 1 1 n \displaystyle \sum_{n=1}^{\infty} \dfrac{1}{n} . We have lim n cos 1 n 1 n = lim n 0 cos n n = \displaystyle \lim_{n \to \infty} \dfrac{\cos \frac{1}{n}}{\frac{1}{n}}=\lim_{n \to 0} \dfrac{\cos n}{n}=\infty , so this series diverges .

D . Again choose n = 1 1 n \displaystyle \sum_{n=1}^{\infty} \dfrac{1}{n} . We have lim n cos 1 n 2 1 n = lim n n cos 1 n 2 = \displaystyle \lim_{n \to \infty} \dfrac{\cos \frac{1}{n^2}}{\frac{1}{n}}=\lim_{n \to \infty} n \cos \dfrac{1}{n^2}=\infty , so this series diverges .

So, the false statement is D \boxed{D} .

Robert Sasaujan
Feb 23, 2019

Since for very small x cos(x) is approximately 1, you can instantly see that D has to be wrong, because for a big enough n the term 1 n 2 \frac{1}{n^2} is close enough to 0 that you are pretty much adding up an infinite number of 1's, which definitely doesn't converge

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...