Converges or Diverges

Calculus Level 2

n = 1 [ n sin ( 1 n ) ( n + 2 ) sin ( 1 n + 2 ) ] \large \sum_{n=1}^\infty \left[n \sin \left(\frac1n \right) - (n+2) \sin \left(\frac1{n+2} \right) \right]

Determine whether the infinite sum above converge or diverge.

Converges Diverges

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Jun 3, 2016

Consider Y = lim r n = 1 r [ n sin ( 1 n ) ( n + 2 ) sin ( 1 n + 2 ) ] \large\mathfrak Y= \displaystyle\lim_{r\to\infty}\displaystyle \sum_{n=1}^r \left[n \sin \left(\frac1n \right) - (n+2) \sin \left(\frac1{n+2} \right) \right]

The series is obviously a telescopic one which decomposes to: sin ( 1 ) + 2 sin ( 1 2 ) lim r ( ( r + 1 ) sin ( 1 r + 1 ) ) lim r ( ( r + 2 ) sin ( 1 r + 2 ) ) \sin(1)+2\sin\left(\dfrac 12\right)-\displaystyle\lim_{r\to\infty}\left((r+1)\sin\left(\dfrac1{r+1}\right)\right)-\displaystyle\lim_{r\to\infty}\left((r+2)\sin\left(\dfrac1{r+2}\right)\right)

For limit calculation, use lim x 0 sin x x = 1 \displaystyle\lim_{x\to 0}\dfrac{\sin x}x=1 , so that sum converges to:

Y = sin ( 1 ) + 2 sin ( 1 2 ) 2 \large\boxed{\color{#0C6AC7}{\mathfrak Y=\sin(1)+2\sin\left(\dfrac 12\right)-2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...