Converging series

Calculus Level 3

Let x n x_n be a sequence of real numbers satisfying the recursion relation

x n = x n 1 8 + 3 \large x_n = \frac{x_{n-1}}{8} + 3

If lim n x n = a b \displaystyle \lim_{n\to\infty} x_n = \dfrac{a}{b} , where a a and b b are coprime positive integers , what is a + b a+b ?


The answer is 31.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Geoff Pilling
Aug 27, 2016

For any x 0 x_0 the series converges to be consistent with x = x 8 + 3 x_\infty = \frac{x_\infty}{8} + 3

\implies x = 24 7 x_\infty = \frac{24}{7}

24 + 7 = 31 24+7 = \boxed{31}

But you haven't proven that it converges. Does it really converge in the first place?

Pi Han Goh - 4 years, 9 months ago

Log in to reply

Aaargh... Thought someone might ask that... :^) I convinced myself it converges in a spreadsheet, but lemme think about how to prove it... :-/

Geoff Pilling - 4 years, 9 months ago
Chew-Seong Cheong
Aug 27, 2016

Relevant wiki: Linear Recurrence Relations

Assuming lim n x n \displaystyle \lim_{n \to \infty} x_n exists and let it be L L . Then we have:

x n = x n 1 8 + 3 lim n x n = lim n x n 1 8 + 3 L = L 8 + 3 7 8 L = 3 L = 24 7 \begin{aligned} x_n & =\frac {x_{n-1}}8+3 \\ \lim_{n \to \infty} x_n & = \lim_{n \to \infty} \frac {x_{n-1}}8+3 \\ L & = \frac L8+3 \\ \frac 78 L & = 3 \\ \implies L & = \frac {24}7 \end{aligned}

a + b = 24 + 7 = 31 \implies a+b=24+7=\boxed {31}


Solution without assuming the limit exists.

x n = x n 1 8 + 3 To make it a linear recurrence relation, let y n = x n u x n u = x n 1 u 8 x n = x n 1 8 + u u 8 7 8 u = 3 u = 24 7 \begin{aligned} x_n & = \frac {x_{n-1}}8 + 3 & \small \color{#3D99F6}{\text{To make it a linear recurrence relation, let }y_n = x_n - u} \\ x_n - u & = \frac {x_{n-1}-u}8 \\ x_n & = \frac {x_{n-1}}8 + u - \frac u8 \\ \implies \frac 78u & = 3 \\ u & = \frac {24}7 \end{aligned}

Now, we have:

y n = y n 1 8 The characteristic equation is r = 1 8 y n = a 8 n x n = a 8 n + 24 7 x 0 = a + 24 7 a = x 0 24 7 x n = x 0 24 7 8 n + 24 7 x = 24 7 \begin{aligned} y_n & = \frac {y_{n-1}}8 & \small \color{#3D99F6}{\text{The characteristic equation is }r=\frac 18} \\ \implies y_n & = \frac a{8^n} \\ x_n & = \frac a{8^n} + \frac {24}7 \\ \implies x_0 & = a + \frac {24}7 \\ a & = x_0 - \frac {24}7 \\ \implies x_n & = \frac {x_0 - \frac {24}7}{8^n} + \frac {24}7 \\ \implies x_\infty & = \frac {24}7 \end{aligned}

a + b = 24 + 7 = 31 \implies a+b = 24+7 = \boxed{31}

Nice angle, @Chew-Seong Cheong !

Geoff Pilling - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...