Converging Triangle

Geometry Level 5

Let there be a triangle A 1 A 2 A 3 A_1A_2A_3 as shown in figure below. Lines A i A i + 1 A_iA_{i+1} are drawn with A i + 1 A_{i+1} lying on A i 1 A i 2 A_{i-1}A_{i-2} such that

A i 2 A i + 1 A i + 1 A i 1 = 3 7 \hspace{5cm}\Large\frac{A_{i-2}A_{i+1}}{A_{i+1}A_{i-1}} = \frac{3}{7} i 3 i N \hspace{1cm}\;i\geq 3\; i\in N

In this way A i 2 A i 1 A i \triangle A_{i-2}A_{i-1}A_i becomes smaller as i i is getting larger and ultimately converges to a point say J J . Join A 1 A_1 and J J and extend it to meet A 2 A 3 A_2A_3 at E E .

\hspace{8cm} If A 1 J J E = a b \Large\frac{A_1J}{JE}=\frac{a}{b} where a a and b b are coprime. Find a + b a+b .


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chris Lewis
Jun 4, 2019

Say point A n A_n has coordinates ( x n , y n ) (x_n,y_n) . We have

10 x n + 3 = 3 x n + 1 + 7 x n 10x_{n+3} = 3x_{n+1}+7x_n and 10 y n + 3 = 3 y n + 1 + 7 y n 10y_{n+3} = 3y_{n+1}+7y_n

Since we can treat x i x_i and y i y_i independently, we will look at the general solution of the recurrence relation 10 u n + 3 = 3 u n + 1 + 7 u n 10u_{n+3} = 3u_{n+1}+7u_n .

The characteristic equation of this recurrence relation is 10 t 3 = 3 t + 7 10t^3=3t+7 . This has a real root at t = 1 t=1 and two complex roots t = 1 10 ( 5 ± 3 i 5 ) t=\frac{1}{10}\left( -5 \pm 3i\sqrt{5} \right) (the complex roots correspond to the spiralling behaviour of the points).

In order to find point J J , we want to know the long-term behaviour of u n u_n given three initial points.

Put τ = 1 10 ( 5 + 3 i 5 ) \tau=\frac{1}{10}\left( -5 + 3i\sqrt{5} \right) . The general solution of the recurrence relation is

u n = P + Q τ n + Q τ n u_n=P+Q\tau^n+\overline{Q} \overline{\tau}^n

(where z \overline{z} is the complex conjugate of z z . We know we can use the conjugate this way because we are dealing with real values for the coordinates)

Since τ < 1 |\tau|<1 , as n n\to \infty , u n P u_n \to P .

So the problem boils down to finding the value of P P from the initial points. Here we can save some effort by using a couple of tricks.

We could at this point solve completely generally; however, we can note that changing the initial triangle won't in fact change the ratio we are looking to find. This means we can pick a "nice" triangle and solve for that.

Further, let's relabel the vertices so that instead of starting at n = 1 n=1 , we start at n = 0 n=0 . This has the effect of slightly simplifying the algebra when working out P P .

Let's choose the starting triangle A 0 ( 0 , 0 ) A_0(0,0) , A 1 ( 1 , 0 ) A_1(1,0) , A 2 ( 0 , 1 ) A_2(0,1) . This triangle has the benefit of satisfying y n = x n 1 y_n = x_{n-1} (simple to check), so J J lies on the line y = x y=x , and we only need to solve for x n x_n . Since E E is the intersection of the lines A 0 J A_0 J and A 1 A 2 A_1 A_2 , we have E ( 1 2 , 1 2 ) E \left( \frac{1}{2},\frac{1}{2} \right) .

We still have to find J J , however.

The three starting points give us the simultaneous equations

P + Q + Q = 0 P + Q τ + Q τ = 1 P + Q τ 2 + Q τ 2 = 0 P+Q+\overline{Q} = 0\\ P+Q\tau+\overline{Q} \overline{\tau} =1\\ P+Q\tau^2+\overline{Q} \overline{\tau}^2 =0

Solving these, we find P = 10 27 P=\frac{10}{27} , and so we have J ( 10 27 , 10 27 ) J \left(\frac{10}{27},\frac{10}{27} \right) .

Finally, by similar triangles (one last trick!), we simply have A 0 J J E = 10 27 1 2 10 27 = 20 7 \frac{A_0 J}{JE}=\frac{\frac{10}{27}}{\frac{1}{2}-\frac{10}{27}}=\frac{20}{7} giving the answer 20 + 7 = 27 20+7=\boxed{27} .

Please contribute your ideas to one of my notes which is very related to this problem. I have used your approach but not able to proceed after some steps. Link to the note is : Converging Triangle - 2

Shikhar Srivastava - 11 months ago

I was not able to mention you there because your name was not coming in the drop down menu form when I have written your name.

Shikhar Srivastava - 11 months ago
Hosam Hajjir
Jun 4, 2019

The given condition on the ratio of lengths, implies that

10 A i + 1 = 7 A i 2 + 3 A i 1 ( 1 ) 10 A_{i+1} = 7 A_{i-2} + 3 A_{i-1} \hspace{12pt} (1) , which can be written as

10 A i + 3 3 A i + 1 7 A i = 0 , i = 1 , 2 , . . . ( 2 ) 10 A_{i+3} - 3 A_{i+1} - 7 A_{i} = 0 , i = 1, 2, ... \hspace{24pt} (2)

This is a difference equation of order 3, its characteristic polynomial is 10 m 3 3 m 7 = 0 10 m^3 - 3 m - 7 = 0 , which by inspection has a root at m = 1 m = 1 , so dividing it by ( m 1 ) (m-1) using synthetic division results in 10 m 3 3 m 7 = ( m 1 ) ( 10 m 2 + 10 m + 7 ) = 0 10 m^3 - 3m - 7 = (m - 1)( 10 m^2 + 10 m + 7) = 0 . The quadratic has the roots m = 1 2 ± i 3 5 10 m = -\dfrac{1}{2} \pm i \dfrac{3 \sqrt{5}}{10} . It follows from this and from standard difference equation solution methods, that

A k = P + Q a ( k 1 ) cos ( ω ( k 1 ) ) + R a ( k 1 ) sin ( ω ( k 1 ) ) ( 3 ) A_{k} = P + Q a^{(k-1)} \cos( \omega (k-1) ) + R a^{(k-1)} \sin ( \omega (k-1) ) \hspace{12pt} (3)

where a = m = 0.7 a = | m | = \sqrt{0.7} and ω = tan 1 3 5 \omega = \tan^{-1} \dfrac{3}{\sqrt{5}} , and P , Q P, Q , and R R are two dimensional vectors. Obviously since a < 1 | a | \lt 1 , the only vector that matters is P P , as the contribution of Q Q and P P will die out. To solve for P P , we can write,

[ A 1 , A 2 , A 3 ] = [ P , Q , R ] M ( 4 ) [ A_1 , A_2, A_3 ] = [ P , Q , R ] M \hspace{12pt} (4)

where M is the following 3 × 3 3 \times 3 matrix (this is can be seen from equation (3) after substituting k = 1 , 2 , 3 k = 1, 2, 3

M = [ 1 1 1 1 a cos ω a 2 cos 2 ω 0 a sin ω a 2 sin 2 ω ] ( 5 ) M = \begin{bmatrix} 1 && 1 && 1 \\ 1 && a \cos \omega && a^2 \cos 2 \omega \\ 0 && a \sin \omega && a^2 \sin 2 \omega \end{bmatrix} \hspace{12pt} (5)

From (4), we now have,

[ P , Q , R ] = [ A 1 , A 2 , A 3 ] M 1 ( 6 ) [ P, Q , R ] = [ A_1 , A_2 , A_3 ] M^{-1} \hspace{12pt} (6)

The inverse of M can be found using any standard mathematical tool. Note that we only care about the first column of M 1 M^{-1} , and this column is given by,

M 1 ( , 1 ) = [ 7 27 10 27 10 27 ] ( 7 ) M^{-1} (\cdot, 1) = \begin{bmatrix} \dfrac{7}{27} \\ \dfrac{10}{27} \\ \dfrac{10}{27} \end{bmatrix} \hspace{12pt} (7)

So that, P = J = 7 27 A 1 + 10 27 ( A 2 + A 3 ) ( 8 ) P = J = \dfrac{7}{27} A_1 + \dfrac{10}{27} (A_2 + A_3) \hspace{12pt} (8)

From this it follows that points on the line A 1 J A_1 J are given by A 1 + s ( A 1 J ) = A 1 + s ( J A 1 ) = A 1 + s ( 20 27 A 1 + 10 27 ( A 2 + A 3 ) A_1 + s (A_1 J) = A_1 + s (J - A_1) = A_1 + s (- \dfrac{20}{27} A_1 +\dfrac{10}{27} (A_2 + A_3) )

The point E E depends only on A 2 A_2 and A 3 A_3 , so the value of s at point E E is 27 20 \dfrac{27}{20} , and therefore, finally, the required ratio is

Ratio = 1 27 20 1 = 1 7 20 = 20 7 \text{Ratio} = \dfrac{1}{ \dfrac{27}{20} - 1 } = \dfrac{1}{ \dfrac{7}{20} } = \dfrac{20}{7}

Making the answer 20 + 7 = 27 20 + 7 = \boxed{ 27 }

Putting i = 3 i = 3

In A 1 A 2 A 3 , A 4 is a point on A 1 A 2 such that A 1 A 4 A 4 A 2 = 3 7 \triangle A_1A_2A_3 \,, \; A_4 \text{ is a point on } A_1A_2 \text{ such that } \Large\frac{A_1A_4}{A_4A_2} = \frac{3}{7}

This pattern is continued for i 4 and we will get a point J which is the converging point of A i 2 A i 1 A i for i . \text{This pattern is continued for } i\geq 4 \text{ and we will get a point } J \text{ which is the converging point of } \triangle A_{i-2}A_{i-1}A_i \text{ for } i \rightarrow \infty .

Join A 3 and J and extend it to meet A 1 A 2 at F 3 . \text{Join } A_3 \text{ and } J \text{ and extend it to meet } A_1A_2 \text{ at } F_3.

Now taking one extra case of i = 2 and assuming some point A 0 in the plane of figure.  According to question, we will have a line A 2 A 3 with A 3 lying on line A 0 A 1 such that \text{Now taking one extra case of }i = 2 \text{ and assuming some point }A_0 \text{ in the plane of figure. } \text{ According to question, we will have a line }A_2A_3 \text{ with } A_3\text{ lying on line } A_0A_1 \text{ such that }

A 0 A 3 A 3 A 1 = 3 7 \hspace{8cm}\Large\frac{A_0A_3}{A_3A_1} = \frac{3}{7} E q . 1 \qquad\cdots \;Eq. 1

That means A 0 lies on A 1 A 3 extended and located such that E q . 1 holds. Join A 2 and A 0 . Join A 2 and J and extend it to meet A 1 A 3 at F 2 . This is illustrated in figure below. A_0 \text{ lies on } A_1A_3 \text{ extended and located such that } Eq. 1 \text{ holds. Join }A_2 \text{ and }A_0.\text{ Join }A_2\text{ and }J \text{ and extend it to meet }A_1A_3\text{ at }F_2.\text{ This is illustrated in figure below. }

We see that adding one extra point A 0 or in fact, forming a new A 0 A 1 A 2 does not affect the position of J . So we can conclude that A 0 A 1 A 2 is analogous to A 1 A 2 A 3 if we take the starting triangle as A 0 A 1 A 2 . So, line A 2 J F 2 is analogous to line A 3 J F 3 . \text{We see that adding one extra point } A_0 \text{ or in fact, forming a new }\triangle A_0A_1A_2 \text{ does not affect the position of }J. \text{ So we can conclude that } \triangle A_0A_1A_2 \text{ is analogous to }\triangle A_1A_2A_3 \text{ if we take the starting triangle as } \triangle A_0A_1A_2. \text{ So, line } A_2JF_2\text{ is analogous to line }A_3JF_3.

So, A 2 J J F 2 = A 3 J J F 3 \text{So, }\Large\frac{A_2J}{JF_2} =\frac{A_3J}{JF_3} E q . 2 \qquad\cdots \;Eq. 2

It can be easily prove that because of E q . 2 , J lies on median of A 1 A 2 A 3 through A 1 . I am skipping this proof. \text{It can be easily prove that because of }Eq. 2\,,\; J\text{ lies on median of } \triangle A_1A_2A_3 \text{ through }A_1. \text{ I am skipping this proof. }

Join A 1 and J and extend it to meet A 2 A 3 at E . Then E is the mid-point of A 2 A 3 . \text{Join }A_1 \text{ and } J \text{ and extend it to meet }A_2A_3 \text{ at } E.\text{ Then }E\text{ is the mid-point of }A_2A_3.

In the similar manner taking i = 4 we get A 2 A 3 A 4 analogous to A 1 A 2 A 3 and also line A 4 J F 4 analogous to line A 3 J F 3 . \text{In the similar manner taking }i=4 \text{ we get }\triangle A_2A_3A_4 \text{ analogous to }\triangle A_1A_2A_3 \text{ and also line } A_4JF_4 \text{ analogous to line } A_3JF_3.

So, A 4 J J F 4 = A 3 J J F 3 \text{So, }\Large\frac{A_4J}{JF_4} =\frac{A_3J}{JF_3} E q . 3 \qquad\cdots \;Eq. 3

Again, because of E q . 3 , J lies on median of A 2 A 3 A 4 through A 2 . which coincides with the line A 2 J F 2 . \text{Again, because of }Eq. 3\,,\; J\text{ lies on median of } \triangle A_2A_3A_4 \text{ through }A_2.\text{ which coincides with the line }A_2JF_2.

Let this line intersect A 3 A 4 at H . Then H is the mid-point of A 3 A 4 . \text{Let this line intersect }A_3A_4 \text{ at }H.\text{ Then }H\text{ is the mid-point of }A_3A_4.

Thus, location of J can be defined as the intersection point of two lines A 1 E and A 2 H where E and H are the mid-point of A 2 A 3 and A 3 A 4 respectively. This is shown in figure below. \text{Thus, location of }J\text{ can be defined as the intersection point of two lines }A_1E \text{ and }A_2H\text{ where } E \text{ and }H \text{ are the mid-point of }A_2A_3 \text{ and }A_3A_4 \text{ respectively. This is shown in figure below.}

Let area of A 1 A 2 A 3 be X . Further in the solution below, area of any triangle P Q R will be denoted by a r ( P Q R ) . \text{Let area of }\triangle A_1A_2A_3 \text{ be } X. \text{ Further in the solution below, area of any triangle }PQR \text{ will be denoted by }ar(\triangle PQR).

I have frequently used the property of the triangle that the area of triangles between the same parallels are in the proportions of their base. \text{I have frequently used the property of the triangle that the area of triangles between the same parallels are in the proportions of their base. }

a r ( A 3 A 1 A 2 ) a r ( A 3 A 1 A 4 ) = A 1 A 2 A 1 A 4 = A 1 A 4 + A 4 A 2 A 1 A 4 = 1 + 7 3 = 10 3 \Large\frac{ar(\triangle A_3A_1A_2)}{ar(\triangle A_3A_1A_4)} = \frac{A_1A_2}{A_1A_4} = \frac{A_1A_4+A_4A_2}{A_1A_4} = 1+\frac{7}{3}=\frac{10}{3}

a r ( A 3 A 1 A 4 ) = 3 X 10 \Rightarrow ar(\triangle A_3A_1A_4) = \frac{3X}{10}

a r ( A 3 A 4 A 2 ) = X 3 X 10 = 7 X 10 \Rightarrow ar(\triangle A_3A_4A_2) = X-\frac{3X}{10} = \frac{7X}{10}

a r ( A 3 H A 2 ) a r ( A 3 A 4 A 2 ) = 1 2 \Large\Rightarrow \frac{ar(\triangle A_3HA_2)}{ar(\triangle A_3A_4A_2)} = \frac{1}{2}

a r ( A 3 H A 2 ) = 1 2 a r ( A 3 A 4 A 2 ) = 1 2 7 X 10 = 7 X 20 E q . 4 \Rightarrow ar(\triangle A_3HA_2) = \frac{1}{2}\cdot ar(\triangle A_3A_4A_2) = \frac{1}{2}\cdot \frac{7X}{10} = \frac{7X}{20} \hspace{1cm}\cdots \;Eq. 4

a r ( A 1 H A 2 ) = a r ( A 1 E A 2 ) = 1 2 a r ( A 3 A 1 A 2 ) = X 2 E q . 5 [ H , E are the mid-points of A 3 A 4 and A 3 A 2 H E A 1 A 2 ] \Rightarrow ar(\triangle A_1HA_2) = ar(\triangle A_1EA_2) = \frac{1}{2}\cdot ar(\triangle A_3A_1A_2)=\frac{X}{2}\hspace{1cm}\cdots\; Eq. 5 \qquad [\because H\,,\,E \text{ are the mid-points of }A_3A_4\text{ and }A_3A_2 \Rightarrow HE \parallel A_1A_2]

Now, \text{Now, } A 3 F 2 F 2 A 1 = a r ( A 3 F 2 A 2 ) a r ( A 1 F 2 A 2 ) = a r ( A 3 F 2 H ) a r ( A 1 F 2 H ) = a r ( A 3 F 2 A 2 ) a r ( A 3 F 2 H ) a r ( A 1 F 2 A 2 ) a r ( A 1 F 2 H ) = a r ( A 3 H A 2 ) a r ( A 1 H A 2 ) = 7 X 20 X 2 = 7 10 \Large\frac{A_3F_2}{F_2A_1}=\frac{ar(\triangle A_3F_2A_2)}{ar(\triangle A_1F_2A_2)}=\frac{ar(\triangle A_3F_2H)}{ar(\triangle A_1F_2H)}=\frac{ar(\triangle A_3F_2A_2)-ar(\triangle A_3F_2H)}{ar(\triangle A_1F_2A_2)-ar(\triangle A_1F_2H)} = \frac{ar(\triangle A_3HA_2)}{ar(\triangle A_1HA_2)}=\frac{\frac{7X}{20}}{\frac{X}{2}}=\frac{7}{10} E q . 6 \hspace{1cm}\cdots\;Eq. 6 [ From E q . 4 and E q . 5 ] \text{ }[\text{ From }Eq. 4\text{ and }Eq.5 ]

Also, \text{Also, } A 3 F 2 F 2 A 1 = a r ( A 3 F 2 A 2 ) a r ( A 1 F 2 A 2 ) = a r ( A 3 F 2 J ) a r ( A 1 F 2 J ) = a r ( A 3 F 2 A 2 ) a r ( A 3 F 2 J ) a r ( A 1 F 2 A 2 ) a r ( A 1 F 2 J ) = a r ( A 3 J A 2 ) a r ( A 1 J A 2 ) \Large\frac{A_3F_2}{F_2A_1}=\frac{ar(\triangle A_3F_2A_2)}{ar(\triangle A_1F_2A_2)}=\frac{ar(\triangle A_3F_2J)}{ar(\triangle A_1F_2J)}=\frac{ar(\triangle A_3F_2A_2)-ar(\triangle A_3F_2J)}{ar(\triangle A_1F_2A_2)-ar(\triangle A_1F_2J)}=\frac{ar(\triangle A_3JA_2)}{ar(\triangle A_1JA_2)}

a r ( A 3 J A 2 ) a r ( A 1 J A 2 ) = A 3 F 2 F 2 A 1 = 7 10 \Large\Rightarrow \frac{ar(\triangle A_3JA_2)}{ar(\triangle A_1JA_2)}=\frac{A_3F_2}{F_2A_1}=\frac{7}{10} [ From E q . 6 ] \hspace{1cm}[\text{From }Eq. 6]

2 a r ( E J A 2 ) a r ( A 1 J A 2 ) = 7 10 \Large\Rightarrow \frac{2\cdot ar(\triangle EJA_2)}{ar(\triangle A_1JA_2)}=\frac{7}{10} [ a r ( A 3 J A 2 ) a r ( E J A 2 ) = 2 ] \hspace{1cm}\Bigg[\because\frac{ar(\triangle A_3JA_2)}{ar(\triangle EJA_2)}=2\Bigg]

a r ( E J A 2 ) a r ( A 1 J A 2 ) = 7 20 \Large\Rightarrow \frac{ar(\triangle EJA_2)}{ar(\triangle A_1JA_2)}=\frac{7}{20}

Now, \text{Now, } A 1 J J E = a r ( A 1 J A 2 ) a r ( E J A 2 ) = 20 7 \Large\frac{A_1J}{JE}=\frac{ar(\triangle A_1JA_2)}{ar(\triangle EJA_2)}=\frac{20}{7}

So, the answer is 20 + 7 = 27 \text{So, the answer is }20+7=27

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...