Converging Trig!

Geometry Level 3

n = 0 sin 1 8 ( cos 1 8 ) n = cot β \large \sum_{n=0}^\infty \sin18^\circ (\cos 18^\circ)^n = \cot \beta

Find β 3 / 2 \beta^{3/2} .

Note : 0 β 9 0 0^\circ \leq \beta \leq 90^\circ


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Feb 7, 2016

Since sin 18 is a constant, we can take it out from summation, also since (cos 18)<1 , n = 0 ( c o s 18 ) n \displaystyle \sum_{n=0}^{\infty} (cos 18)^n represents a sum of infinite G P GP with first term 1 1 and common difference cos 18 \cos 18 . ( sin 18 ) × n = 0 ( cos 18 ) n = sin 18 1 ( cos 18 ) (\sin18) \times \displaystyle \sum_{n=0}^{\infty} (\cos18)^n =\dfrac{\sin 18}{1-(\cos18)} ( Using sin2x=2 (sinx)(cosx) and 1-cos2x=2 sin 2 x ) \small({\color{#D61F06}{\text{Using sin2x=2 (sinx)(cosx) and 1-cos2x=2}\sin^2 x})} = 2 ( sin 9 ) ( cos 9 ) 2 sin 2 9 = cot 9 \large =\dfrac{2(\sin 9)(\cos 9)}{2\sin^2 9}=\cot 9 Hence, ( 9 ) 3 2 = 27 \Large (9)^{\frac{3}{2}}=\huge\boxed{\color{#007fff}{27}}

n = 0 sin 1 8 cos n 1 8 = sin 1 8 n = 0 cos n 1 8 As 0 < cos 1 8 < 1 , sum of GP = sin 1 8 ( 1 1 cos 1 8 ) Using half-angle identities = 2 tan 9 1 + tan 2 9 1 1 tan 2 9 1 + tan 2 9 = 2 tan 9 1 + tan 2 9 1 + tan 2 9 = 2 tan 9 2 tan 2 9 = 1 tan 9 = cot 9 \begin{aligned} \sum_{n=0}^\infty \sin 18^\circ \cos ^n 18^\circ & = \sin 18^\circ \color{#3D99F6} {\sum_{n=0}^\infty \cos ^n 18^\circ} \quad \quad \small \color{#3D99F6}{\text{As } 0 <\cos 18^\circ < 1 \text{, sum of GP}} \\ & = \sin 18^\circ \color{#3D99F6}{ \left(\frac{1}{1-\cos 18^\circ} \right)} \quad \quad \small \color{#3D99F6}{\text{Using half-angle identities}} \\ & = \frac{\dfrac{2\tan 9^\circ}{1+\tan^2 9^\circ}}{1-\dfrac{1-\tan^2 9^\circ}{1+\tan^2 9^\circ}} \\ & = \frac{2 \tan 9^\circ}{1+\tan^2 9^\circ - 1+\tan^2 9^\circ} \\ & = \frac{2 \tan 9^\circ}{2\tan^2 9^\circ} = \frac{1}{\tan 9^\circ} = \cot 9^\circ \end{aligned}

β 3 2 = 9 3 2 = 27 \Rightarrow \beta^{\frac{3}{2}} = 9^{\frac{3}{2}} = \boxed{27}

Jack Rawlin
Feb 13, 2016

n = 0 a r n = a 1 r \sum_{n = 0}^{\infty}{ar^n} = \frac{a}{1 - r}

a = sin 1 8 , r = cos 1 8 a = \sin 18^\circ,~ r = \cos 18^\circ

n = 0 sin 1 8 ( cos 1 8 ) n = sin 1 8 1 cos 1 8 \sum_{n = 0}^{\infty}{\sin 18^\circ} (\cos 18^\circ)^n = \frac{\sin 18^\circ}{1 - \cos 18^\circ}

sin 1 8 1 cos 1 8 = cot β \frac{\sin 18^\circ}{1 - \cos 18^\circ} = \cot \beta

sin 1 8 1 cos 1 8 = 1 tan β \frac{\sin 18^\circ}{1 - \cos 18^\circ} = \frac{1}{\tan \beta}

1 cos 1 8 sin 1 8 = tan β \frac{1 - \cos 18^\circ}{\sin 18^\circ} = \tan \beta

1 ( cos 2 9 sin 2 9 ) sin 1 8 = tan β \frac{1 - (\cos^2 9^\circ - \sin^2 9^\circ)}{\sin 18^\circ} = \tan \beta

sin 2 9 + cos 2 9 + sin 2 9 cos 2 9 sin 1 8 = tan β \frac{\sin^2 9^\circ + \cos^2 9^\circ + \sin^2 9^\circ - \cos^2 9^\circ}{\sin 18^\circ} = \tan \beta

2 sin 2 9 sin 1 8 = tan β \frac{2\sin^2 9^\circ}{\sin 18^\circ} = \tan \beta

2 sin 2 9 2 sin 9 cos 9 = tan β \frac{2\sin^2 9^\circ}{2\sin 9^\circ\cos 9^\circ} = \tan \beta

sin 9 c o s 9 = tan β \frac{\sin 9^\circ}{cos 9^\circ} = \tan \beta

tan 9 = tan β \tan 9^\circ = \tan \beta

β = 9 \beta = 9

β 3 2 = 9 3 2 = 27 \beta^\frac{3}{2} = 9^\frac{3}{2} = 27

β 3 2 = 27 \large \boxed{\beta^\frac{3}{2} = 27}

No calculators allowed!

Dallin Richards - 5 years, 4 months ago

Log in to reply

I apologise, I did not realise calculators were not allowed. I'll rewrite the solution so that the answer can be found without the use of one.

Edit: It has been fixed

Jack Rawlin - 5 years, 4 months ago

Log in to reply

Lol it's no big deal man. Thanks.

Dallin Richards - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...