Convert them into an algebraic expression first!

Algebra Level 2

16 ÷ 16 ÷ 16 ÷ ÷ 16 number of 16’s = N = 64 ÷ 64 ÷ 64 ÷ ÷ 64 number of 64’s = 8 \large \underbrace{16 \div 16 \div 16 \div \cdots \div 16 }_{\text{number of 16's }=\, N} = \underbrace{64 \div 64 \div 64 \div \cdots \div 64 }_{\text{number of 64's }=\, 8}

What is N N ?


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

16 ÷ 16 ÷ 16 ÷ ÷ 16 number of 16’s = N = 16 ÷ ( 16 × 16 × × 16 number of 16’s = N 1 ) = 16 ÷ 1 6 N 1 = 1 6 1 ( N 1 ) = 1 6 2 N . \underbrace{16 \div 16 \div 16 \div \cdots \div 16 }_{\text{number of 16's }=\, N} = 16 \div \left( \underbrace{ 16 \times 16\times \cdots \times 16 }_{\text{number of 16's }=\, N-1}\right) = 16 \div 16^{N-1} = 16^{1- (N-1)} = 16^{2-N}.

Similarly,

64 ÷ 64 ÷ 64 ÷ ÷ 64 number of 64’s = 8 = 64 ÷ ( 64 × 64 × × 64 number of 64’s = 7 ) = 64 ÷ 6 4 7 = 6 4 1 7 = 6 4 6 . \underbrace{64 \div 64 \div 64 \div \cdots \div 64 }_{\text{number of 64's }=\, 8} =64\div \left( \underbrace{ 64\times 64 \times \cdots \times 64 }_{\text{number of 64's }=\, 7} \right) = 64 \div 64^7 = 64^{1-7} = 64^{-6}.

Equating these two gives

1 6 2 N = 6 4 6 ( 4 2 ) 2 N = ( 4 3 ) 6 4 2 ( 2 N ) = 4 3 ( 6 ) 2 ( 2 N ) = 3 ( 6 ) 4 2 N = 18 2 N = 22 N = 11 . \begin{aligned} 16^{2-N} &= &64^{-6} \\ (4^2)^{2-N} &= &(4^3)^{-6} \\ 4^{2(2-N)} &= &4^{3(-6)} \\ 2(2-N) &= & 3(-6) \\ 4 - 2N &= & - 18 \\ -2N &= & -22 \\ N&= & \boxed{11} . \end{aligned}

Zee Ell
Jan 18, 2017

( 16 ÷ 16 ) ÷ 16... ÷ 16 ÷ 16 = ( 64 ÷ 64 ) ÷ 64 ÷ 64 ÷ 64 ÷ 64 ÷ 64 ÷ 64 (16÷16)÷16...÷16÷16 = (64 ÷64)÷64÷64÷64÷64÷64÷64

1 ÷ 1 6 N 2 = 1 ÷ 6 4 6 1 ÷ 16^{N - 2} = 1 ÷ 64^6

1 6 2 N = 6 4 6 16^{2 - N} = 64^ {-6}

Since 16 = 4 2 and 64 = 4 3 , therefore: \text {Since } 16 = 4^2 \text { and } 64 = 4^3 \text { , therefore: }

4 2 ( 2 N ) = 4 3 × ( 6 ) 4^{2(2 - N)} = 4^{3 × (-6)}

4 2 N = 18 4 - 2N = -18

2 N = 22 2N = 22

N = 11 N = \boxed {11}

Avianna Gay
Apr 25, 2017

If there are 8 64s then that means that:

64÷64÷64÷....÷64= 64/(64^(7)) = 64^(-6)

In the same sense, if there are N number of 16s then that means that:

16÷16÷16÷....÷16= 16/[16^(N-1)]

= 16^(2-N)

so if 64^(-6) = 16^(2-N);

then [64^(-6)]^(-1)=[16^(2-N)]^(-1)

64^(6)=16^(N-2)

(4^(3))^(6)= (4^2)^(N-2)

4^(18) = 4^(2N-4)

ln[4^(18)] = ln[4^(2N-4)]

(18) ln [4] = (2N-4)ln[4]

(18) ln [4]/ln[4] = (2N-4)ln[4]/ln[4]

18 = 2N-4

18+4 = 2N

22=2N

N = 11

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...