x + y = x 2 − x y + y 2
Find all integral solutions of the equation above. If you have n integral solutions ( x i , y i ) , enter your answer as i = 1 ∑ n ( x i + y i ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The given equation can be converted to ( x − 1 ) 2 + ( y − 1 ) 2 + ( x − y ) 2 = 2
( x 2 + y 2 − x y ) = ( x + y )
( 2 x 2 + 2 y 2 − 2 x y ) = 2 ( x + y )
( x 2 − 2 x + 1 ) + ( y 2 − 2 y + 1 ) + ( x 2 + y 2 − 2 x y ) − 2 = 0
( x − 1 ) 2 + ( y − 1 ) 2 + ( x − y ) 2 = 2
It has the solutions: ( 0 . 0 ) , ( 0 , 1 ) , ( 1 , 0 ) , ( 1 , 2 ) , ( 2 , 1 ) , a n d ( 2 , 2 )
My approach is a bit different.
We get
( x + y ) = ( x + y ) 2 − 3 x y
This can be written as ( x + y ) ( x + y − 1 ) = 3 x y
Then we can put certain cases like x + y = 3 , x + y − 1 = x y and we would get the solutions as
( 0 , 0 ) , ( 1 , 0 ) , ( 0 , 1 ) , ( 1 , 2 ) , ( 2 , 1 ) , ( 2 , 2 ) .
Another thing to observe here is that
a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) .
So essentially the question asks for how many positive integers x , y
x 3 + y 3 = m 2 , where "m" is an integer.
The above fact can be used to establish a solution consisting of both x , y as negative integers does not exist and at the same time also establish that a solution where one integer can be +ve and other -ve can also not exist.
Problem Loading...
Note Loading...
Set Loading...
Similar approach as Ossama Ismail 's.
Consider
( x − 1 ) 2 + ( y − 1 ) 2 = x 2 − 2 x + 1 + y 2 − 2 y + 1 = x 2 + y 2 − 2 ( x + y ) + 2 = x 2 + y 2 − 2 ( x 2 − x y + y 2 ) + 2 = − x 2 + 2 x y − y 2 + 2 = − ( x − y ) 2 + 2 Given that x + y = x 2 − x y + y 2
⟹ ( x − 1 ) 2 + ( y − 1 ) 2 + ( x − y ) 2 ⟹ a 2 + b 2 + ( a − b ) 2 a 2 − a b + b 2 b 2 − a b + a 2 − 1 = 2 = 2 = 1 = 0 Let a = x − 1 , b = y − 1 ⟹ a − b = x − y A quadratic equation of b
⟹ b = 2 a ± a 2 − 4 a 2 + 4 = 2 a ± 4 − 3 a 2
For real b , 4 − 3 a 2 ≥ 0 ⟹ a = − 1 , 0 , 1 . Then we have:
⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ a = − 1 a = 0 a = 1 ⟹ b = 2 − 1 ± 4 − 3 = 0 , − 1 ⟹ b = 2 0 ± 4 − 0 = 1 , − 1 ⟹ b = 2 1 ± 4 − 3 = 1 , 0 ⟹ ( x , y ) = { ( 0 , 1 ) ( 0 , 0 ) ⟹ ( x , y ) = { ( 1 , 2 ) ( 1 , 0 ) ⟹ ( x , y ) = { ( 2 , 2 ) ( 2 , 1 )
⟹ i = 1 ∑ 6 ( x i + y i ) = 1 + 0 + 3 + 1 + 4 + 3 = 1 2