Convert to f ( x , y ) = 2 f(x,y) = 2

x + y = x 2 x y + y 2 \large x+y = x^2 -xy +y^2

Find all integral solutions of the equation above. If you have n n integral solutions ( x i , y i ) (x_i,y_i) , enter your answer as i = 1 n ( x i + y i ) \displaystyle \sum_ {i=1} ^n (x_i+y_i) .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Feb 12, 2017

Similar approach as Ossama Ismail 's.

Consider

( x 1 ) 2 + ( y 1 ) 2 = x 2 2 x + 1 + y 2 2 y + 1 = x 2 + y 2 2 ( x + y ) + 2 Given that x + y = x 2 x y + y 2 = x 2 + y 2 2 ( x 2 x y + y 2 ) + 2 = x 2 + 2 x y y 2 + 2 = ( x y ) 2 + 2 \begin{aligned} (x-1)^2 + (y-1)^2 & = x^2 - 2x + 1 + y^2 - 2y + 1 \\ & = x^2 + y^2 - 2({\color{#3D99F6}x+y}) + 2 & \small \color{#3D99F6} \text{Given that } x+y = x^2 - xy + y^2 \\ & = x^2 + y^2 - 2({\color{#3D99F6}x^2 - xy + y^2}) + 2 \\ & = - x^2 + 2xy - y^2 + 2 \\ & = - (x-y)^2 + 2 \end{aligned}

( x 1 ) 2 + ( y 1 ) 2 + ( x y ) 2 = 2 Let a = x 1 , b = y 1 a 2 + b 2 + ( a b ) 2 = 2 a b = x y a 2 a b + b 2 = 1 b 2 a b + a 2 1 = 0 A quadratic equation of b \begin{aligned} \implies (x-1)^2 + (y-1)^2 + (x-y)^2 & = 2 & \small \color{#3D99F6} \text{Let }a = x-1, \ b = y - 1 \\ \implies a^2 + b^2 + (a-b)^2 & = 2 & \small \color{#3D99F6} \implies a - b = x -y \\ a^2 -ab + b^2 & = 1 \\ {\color{#3D99F6}b^2} - a{\color{#3D99F6}b} + a^2-1 & = 0 & \small \color{#3D99F6} \text{A quadratic equation of }b \end{aligned}

b = a ± a 2 4 a 2 + 4 2 = a ± 4 3 a 2 2 \begin{aligned} \implies b & = \frac {a \pm \sqrt{a^2-4a^2 + 4}}2 \\ & = \frac {a \pm \sqrt{4-3a^2}}2 \end{aligned}

For real b b , 4 3 a 2 0 4-3a^2 \ge 0 a = 1 , 0 , 1 \implies a = -1, 0, 1 . Then we have:

{ a = 1 b = 1 ± 4 3 2 = 0 , 1 ( x , y ) = { ( 0 , 1 ) ( 0 , 0 ) a = 0 b = 0 ± 4 0 2 = 1 , 1 ( x , y ) = { ( 1 , 2 ) ( 1 , 0 ) a = 1 b = 1 ± 4 3 2 = 1 , 0 ( x , y ) = { ( 2 , 2 ) ( 2 , 1 ) \begin{cases} a = -1 & \implies b = \dfrac {-1 \pm \sqrt{4-3}}2 = 0, -1 & \implies (x,y) = \begin{cases} (0, 1) \\ (0, 0) \end{cases} \\ a = 0 & \implies b = \dfrac {0 \pm \sqrt{4-0}}2 = 1, -1 & \implies (x,y) = \begin{cases} (1, 2) \\ (1, 0) \end{cases} \\ a = 1 & \implies b = \dfrac {1 \pm \sqrt{4-3}}2 = 1, 0 & \implies (x,y) = \begin{cases} (2, 2) \\ (2, 1) \end{cases} \end{cases}

i = 1 6 ( x i + y i ) = 1 + 0 + 3 + 1 + 4 + 3 = 12 \implies \displaystyle \sum_{i=1}^6 (x_i + y_i) = 1+0+3+1+4+3 = \boxed{12}

Ossama Ismail
Feb 12, 2017

The given equation can be converted to ( x 1 ) 2 + ( y 1 ) 2 + ( x y ) 2 = 2 (x-1)^2 + (y-1)^2 +(x-y)^2 =2

( x 2 + y 2 x y ) = ( x + y ) (x^2 + y^2 - xy) = (x+y)

( 2 x 2 + 2 y 2 2 x y ) = 2 ( x + y ) (2x^2 + 2y^2 - 2xy) = 2(x+y)

( x 2 2 x + 1 ) + ( y 2 2 y + 1 ) + ( x 2 + y 2 2 x y ) 2 = 0 (x^2 -2x +1) + (y^2 - 2y +1) +(x^2 +y^2 -2xy) - 2 = 0

( x 1 ) 2 + ( y 1 ) 2 + ( x y ) 2 = 2 (x-1)^2 + (y-1)^2 +(x-y)^2 =2

It has the solutions: ( 0.0 ) , ( 0 , 1 ) , ( 1 , 0 ) , ( 1 , 2 ) , ( 2 , 1 ) , a n d ( 2 , 2 ) (0.0), (0,1), (1,0), (1,2), (2,1), \ and \ (2,2)

Achal Jain
Feb 18, 2017

My approach is a bit different.

We get

( x + y ) = ( x + y ) 2 3 x y \large(x+y)= (x+y)^{2} -3xy

This can be written as ( x + y ) ( x + y 1 ) = 3 x y \large (x+y)(x+y-1)=3xy

Then we can put certain cases like x + y = 3 , x + y 1 = x y \large x+y=3, x+y-1=xy and we would get the solutions as

( 0 , 0 ) , ( 1 , 0 ) , ( 0 , 1 ) , ( 1 , 2 ) , ( 2 , 1 ) , ( 2 , 2 ) \large (0,0), (1,0),(0,1),(1,2),(2,1),(2,2) .

Another thing to observe here is that

a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 ) \large a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2}) .

So essentially the question asks for how many positive integers x , y \large x,y

x 3 + y 3 = m 2 , \large x^{3}+y^{3}=m^{2}, where "m" is an integer.

The above fact can be used to establish a solution consisting of both x , y \large x,y as negative integers does not exist and at the same time also establish that a solution where one integer can be +ve and other -ve can also not exist.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...