Convoluted Integral

Calculus Level 5

1 ln ( ln ( x ) ) x 2019 d x = ln A + B γ C \int_1^\infty \frac{\ln \left( \ln \left( x\right) \right)}{x^{2019}} dx =-\frac{\ln A +B\gamma}{C}

The equation above holds true for positive integers A A , B B , and C C . Find min ( A + B + C ) \min \left( A+B+C\right) .

Notation: γ \gamma denotes the Euler-Mascheroni constant


The answer is 4037.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Guilherme Niedu
Sep 28, 2019

I = 1 ln ( ln ( x ) ) x 2019 d x \large \displaystyle I = \int_1^{\infty} \frac{\ln(\ln(x))}{x^{2019}} dx

Let x = e u x=e^u . Then d x = e u d u dx=e^u du and:

I = 0 e 2018 u ln ( u ) d u \large \displaystyle I = \int_0^{\infty} e^{-2018u}\ln(u)du

Let u = t 2018 u = \frac{t}{2018} . Then d u = d t 2018 du = \frac{dt}{2018} and:

I = 1 2018 ( 0 e t ln ( t 2018 ) d t ) \large \displaystyle I = \frac{1}{2018} \left ( \int_0^{\infty} e^{-t}\ln \left ( \frac{t} {2018} \right) dt \right )

I = 1 2018 ( 0 e t ln ( t ) d t 0 e t ln ( 2018 ) d t ) \large \displaystyle I = \frac{1}{2018} \left ( \int_0^{\infty} e^{-t}\ln(t)dt - \int_0^{\infty} e^{-t}\ln(2018)dt \right)

I = 1 2018 ( 0 e t ln ( t ) d t + ln ( 2018 ) 0 e t d t ) \large \displaystyle I = - \frac{1}{2018} \left ( - \int_0^{\infty} e^{-t}\ln(t)dt + \ln(2018) \int_0^{\infty} e^{-t}dt \right)

The first integral is the definition of the Euler-Mascheroni constant , γ \gamma :

Then :

I = γ + ln ( 2018 ) 2018 \color{#20A900} \boxed{\large \displaystyle I = - \frac{\gamma + \ln(2018)}{2018}}

Thus:

A = 2018 , B = 1 , C = 2018 , A + B + C = 4037 \color{#3D99F6} \large \displaystyle A=2018, B=1, C=2018, \boxed{\large \displaystyle A+B+C=4037}

Nice solution (+1).

Following you work, in general for any positive integer k > 1 k>1 1 ln ( ln x ) x k d x = ln ( k 1 ) + γ k 1 \int_1^{\infty} \frac{\ln(\ln x)}{x^k}dx =-\frac{\ln(k-1)+\gamma}{k-1}

Naren Bhandari - 11 months, 1 week ago

Hey there @Hamza A , I believe it was Hummus A previously at least 4 years ago when I was active on this platform. We know from the definition of Gamma function that,

Γ ( a ) = 201 8 a 0 e 2018 x x a 1 dx \displaystyle \Gamma(a) = 2018^a \int_0^{\infty} e^{-2018x} x^{a-1} \operatorname{dx} Differentiating both sides with respect to 'a' we have, Γ ( a ) 201 8 a ( ψ 0 ( a ) ln ( 2018 ) ) = 0 e 2018 x x a 1 ln x dx \displaystyle \dfrac{\Gamma(a)}{2018^a}\left(\psi_{0}(a)-\ln(2018)\right) = \int_0^{\infty} e^{-2018x} x^{a-1} \ln x \operatorname{dx} Putting a = 1 a=1 along with ψ 0 ( 1 ) = γ \psi_0(1)=-\gamma gives us, 0 e 2018 x ln x dx = ln ( 2018 ) + γ 2018 \displaystyle \int_0^{\infty} e^{-2018x} \ln x \operatorname{dx} = -\dfrac{\ln(2018)+\gamma}{2018} Substitute e x x e^x \to x to get, 1 ln ( ln x ) x 2019 dx = 0 e 2018 x ln x dx = ln ( 2018 ) + γ 2018 \displaystyle \int_1^\infty \dfrac{\ln(\ln x)}{x^{2019}} \operatorname{dx} =\int_0^{\infty} e^{-2018x} \ln x \operatorname{dx} = -\dfrac{\ln(2018)+\gamma}{2018} Therefore the answer is, A + B + C = 2018 + 1 + 2018 = 4037 \boxed{A+B+C = 2018+1+2018 = 4037}

First Last
Oct 15, 2020

Slightly different solution, but using differentiation and the Gamma function:

I = 1 ln ( ln ( x ) ) x 2019 d x \displaystyle I=\int_1^{\infty}\frac{\ln(\ln(x))}{x^{2019}}dx

Substitute x = e u , d x = e u d u x=e^u,\quad dx=e^udu

I = 0 ln ( u ) e 2018 u d u = d d n 0 u n 1 e 2018 u d u n = 1 \displaystyle I=\int_0^{\infty}\frac{\ln(u)}{e^{2018u}}du = \frac{d}{dn} \int_0^{\infty}\frac{u^{n-1}}{e^{2018u}}du |_{n=1}

Substitute t = 2018 u t=2018u

I = d d n 1 201 8 n 0 t n 1 e t d t n = 1 \displaystyle I=\frac{d}{dn}\frac{1}{2018^{n}}\int_0^{\infty}\frac{t^{n-1}}{e^{t}}dt |_{n=1}

I = d d n Γ ( n ) 201 8 n n = 1 \displaystyle I=\frac{d}{dn}\frac{\Gamma(n)}{2018^n}|_{n=1}

I = Γ ( n ) ( ln 2018 ψ ( 0 ) ( n ) ) ) 201 8 n n = 1 = ln 2018 γ 2018 \displaystyle I= -\frac{\Gamma(n)(\ln{2018} - ψ^{(0)}(n)))}{2018^n}|_{n=1} = \boxed{-\frac{\ln{2018}-\gamma}{2018}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...