Cool Algebra!

Algebra Level 3

If 1 2011 + 201 1 2 1 = m n \frac {1}{\sqrt{2011+\sqrt {2011^2-1}}}=\sqrt {m}-\sqrt {n} where m m and n n are positive integers ,what is the value of m + n m+n ?

4014 2011 3498 565

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Kenneth Gravamen
Sep 16, 2015

First, rationalize the denominator. 1 2011 + 201 1 2 1 \large\frac{1}{\sqrt{2011+\sqrt{2011^{2}-1}}} × \times 2011 201 1 2 1 2011 201 1 2 1 \large\frac{\sqrt{2011-\sqrt{2011^{2}-1}}}{\sqrt{2011-\sqrt{2011^{2}-1}}}

\hookrightarrow 2011 201 1 2 1 \sqrt{2011-\sqrt{2011^{2}-1}}

Using the identity a ± b \sqrt{a±\sqrt{b}} = a + a 2 b 2 \large\sqrt{\frac{a+\sqrt{a^{2}-b}}{2}} ± a a 2 b 2 \large\sqrt{\frac{a-\sqrt{a^{2}-b}}{2}} ,

2011 201 1 2 1 \sqrt{2011-\sqrt{2011^{2}-1}} = 2011 + 201 1 2 ( 201 1 2 1 ) 2 \large\sqrt{\frac{2011+\sqrt{2011^{2}-(2011^{2}-1)}}{2}} - 2011 201 1 2 ( 201 1 2 1 ) 2 \large\sqrt{\frac{2011-\sqrt{2011^{2}-(2011^{2}-1)}}{2}}

\hookrightarrow 2011 + 1 2 \large\sqrt{\frac{2011+\sqrt{1}}{2}} - 2011 1 2 \large\sqrt{\frac{2011-\sqrt{1}}{2}}

\hookrightarrow 2012 2 \large\sqrt{\frac{2012}{2}} - 2010 2 \large\sqrt{\frac{2010}{2}}

\hookrightarrow 1006 \large\sqrt{1006} - 1005 \large\sqrt{1005}

Hence, m = 1006 m = 1006 and n = 1005 n = 1005 .

m + n = 2011 \boxed{m + n = 2011}

Nice solution :P

Rohit Udaiwal - 5 years, 8 months ago
Eeshan Khan
Sep 18, 2015

Do square of rhs, to find 2*sqrt(mn) do sqrt(m) + sqrt(n) whole square -( sqrt(m)-sqrt(n))whole square whole by 4. To find sqrt m minus sqrt n, rationalise lhs. Use obtained term to find soln

Chinmaya Chinmaya
Sep 13, 2015

Ràtionalise L.H.S. then square both sides and compare.

please provide a complete solution

Abdur Rehman Zahid - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...