Cool area problem

Calculus Level 5

0 e x sin ( x ) d x = 1 2 {\large\int}_0^\infty e^{-x}\sin(x)\, dx = \frac{1}{2}

Given the above, consider the fact that e x sin ( x ) e^{-x}\sin(x) is both positive and negative for x x between 0 0 and . \infty. Then the total area between the function y = e x sin ( x ) y=e^{-x}\sin(x) and the positive x x -axis must be greater than 1 2 . \frac12. That's because the area of each closed region below the x x -axis now becomes positive (from negative).

Find the total area between y = e x sin ( x ) y=e^{-x}\sin(x) and the positive x x -axis correct to 7 decimal places.


The answer is 0.5451657.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hassan Abdulla
Aug 29, 2018

A = 0 e x sin ( x ) d x = 0 e x sin ( x ) d x e x > 0 = k = 0 ( ( 1 ) k k π ( k + 1 ) π e x sin ( x ) d x ) k π < x < ( k + 1 ) π sin ( x ) = ( 1 ) k sin ( x ) = k = 0 ( ( 1 ) k e x ( sin ( x ) + cos ( x ) ) ) 2 k π ( k + 1 ) π ) = 1 2 k = 0 ( ( 1 ) k [ e ( k + 1 ) π cos ( ( k + 1 ) π ) e k π cos ( k π ) ] ) = 1 2 k = 0 ( ( 1 ) k [ e k π e π ( 1 ) k + 1 e k π ( 1 ) k ] ) cos ( k π ) = ( 1 ) k = 1 2 k = 0 e k π ( e π ( 1 ) 2 k + 1 ( 1 ) 2 k ) = e π + 1 2 k = 0 ( e π ) k = e π + 1 2 1 1 e π geometric series A = e π + 1 2 ( e π 1 ) 0.5451657 \begin{aligned} A &=\int_0^\infty \left | e^{-x}\sin(x) \right|dx=\int_0^\infty e^{-x} \left | \sin(x) \right|dx & & \color{#D61F06} e^{-x}>0 \\ &=\sum_{k=0}^\infty \left ( (-1)^k \int_{k \pi}^{(k+1) \pi} e^{-x}\sin(x)dx\right ) & & \color{#D61F06} k\pi<x<(k+1)\pi\Rightarrow \left | \sin(x) \right |=(-1)^k \sin(x) \\ &=\sum_{k=0}^\infty \left ( (-1)^k \left . \frac{-e^{-x}\left ( \sin(x)+\cos(x)) \right )}{2} \right |_{k\pi}^{(k+1)\pi} \right ) \\ &=\frac{-1}{2} \sum_{k=0}^\infty \left ( (-1)^k \left [ e^{-(k+1)\pi} \cos((k+1)\pi)-e^{-k\pi} \cos(k\pi) \right ] \right ) \\ &=\frac{-1}{2} \sum_{k=0}^\infty \left ( (-1)^k \left [ e^{-k\pi} e^{-\pi} (-1)^{k+1}-e^{-k\pi} (-1)^k \right ] \right ) & & \color{#D61F06} \cos(k \pi)=(-1)^k\\ &=\frac{-1}{2} \sum_{k=0}^\infty e^{-k\pi} \left (e^{-\pi} (-1)^{2k+1}-(-1)^{2k} \right ) \\ &=\frac{e^{-\pi} +1 }{2} \sum_{k=0}^\infty \left (e^{-\pi} \right )^k =\frac{e^{-\pi} +1 }{2} \cdot \frac{1 }{1-e^{-\pi}} & & \color{#D61F06} \text{geometric series}\\ A &=\frac{e^\pi+1}{2\left (e^\pi-1 \right )}\approx 0.5451657 \end{aligned}

Linus Kelsey
Aug 28, 2018

Let f ( x ) = e x s i n ( x ) f(x)=e^{-x}sin(x) .

Then the area, A = i = 0 i π ( i + 1 ) π f ( x ) d x A = \sum_{i=0}^\infty |\int_{i\pi}^{(i+1)\pi} f(x) dx| .

Calculating the integral in the summation via integration by parts gives i π ( i + 1 ) π f ( x ) d x = ( 1 ) i e i π ( e π + 1 ) 2 \int_{i\pi}^{(i+1)\pi} f(x) dx = \frac{(-1)^{i}e^{-i\pi}(e^{-\pi}+1)}{2} , and taking the absolute value of this gives the area as A = i = 0 e i π ( e π + 1 ) 2 A = \sum_{i=0}^\infty \frac{e^{-i\pi}(e^{-\pi}+1)}{2} . This sum is simply a geometric series, and using S = a 0 1 r S=\frac{a_0}{1-r} gives A = e π + 1 2 ( e π 1 ) \boxed{A = \frac{e^{\pi}+1}{2(e^{\pi}-1)}} . Note that we can also find the positive and negative areas of the graph by solving the simultaneous equations A 1 A 2 = e π + 1 2 ( e π 1 ) A_1-A_2=\frac{e^{\pi}+1}{2(e^{\pi}-1)} and A 1 + A 2 = 1 2 A_1+A_2=\frac{1}{2} , where A 1 A_1 and A 2 A_2 are the positive and negative areas, respectively. This gives A 1 = e π 2 ( e π 1 ) A_1=\frac{e^{\pi}}{2(e^{\pi}-1)} and A 2 = 1 2 ( e π 1 ) A_2 = \frac{-1}{2(e^{\pi}-1)} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...