Cool function

Calculus Level 5

L e t f ( x ) = sin 23 x cos 22 x a n d g ( x ) = 1 + 1 2 tan 1 x , t h e n o . o f v a l u e s o f x i n i n t e r v a l [ 10 π , 20 π ] s a t i s f y i n g t h e e q u a t i o n f ( x ) = s g n ( g ( x ) ) i s Let\quad f\left( x \right) =\sin ^{ 23 }{ x-\cos ^{ 22 }{ x } } \quad and\quad g\left( x \right) =1+\frac { 1 }{ 2 } \tan ^{ -1 }{ \left| x \right| } ,\\ the\quad no.\quad of\quad values\quad of\quad x\quad in\quad interval\quad \left[ -10\pi ,20\pi \right] \quad satisfying\\ the\quad equation\quad f\left( x \right) =sgn\left( g\left( x \right) \right) \quad is


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Prakhar Gupta
Mar 30, 2015

Let's observe g ( x ) g(x) . g ( x ) = 1 + 1 2 tan 1 x g(x) = 1+\frac{1}{2} \tan ^{-1}|x| Whatever be the value of x x , g ( x ) g(x) is always + + ve. Hence s g n ( g ( x ) ) sgn(g(x)) is always 1 1 . Hence our task is reduced to find the solution of f ( x ) = 1 f(x) = 1 sin 23 x cos 22 x = 1 \implies \sin^{23}x - \cos^{22} x = 1 sin 23 x = 1 + cos 22 x \implies \sin^{23} x = 1+ \cos^{22}x Now we observe that R H S 1 RHS \geq 1 , but L H S 1 LHS \leq 1 . Hence only solution is that 1 + cos 22 x = 1 a n d sin 23 x = 1 1+\cos^{22}x= 1 and \sin^{23} x =1 Solving above we get solution of the form x = 2 n π + π 2 x = 2n\pi + \dfrac{\pi}{2} The values of n n which satisfy the given domain are { 5 , 4 , 3 , 7 , 8 , 9 } \{-5,-4,-3, \ldots 7,8,9\} .

Nice solution @Prakhar Gupta

Utkarsh Bansal - 6 years, 2 months ago
Hafiz Khan
Mar 22, 2015

sgn(g(X))=1 as g(X)>=1 so f(X)=1 then x=2n pi + pi/2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...