Cool inequality

Algebra Level 5

Let x , y , z x, y, z be positive real numbers such that: x 2 + y 2 + z 2 + 1 = 2 ( x y + y z + z x ) x^2+y^2+z^2+1=2(xy+yz+zx) .

The minimum value of P = 3 x + 2 y + 6 z P=3x+2y+6z is α \alpha iff x = β ; y = γ ; z = δ x=\beta; y=\gamma; z=\delta .

And α + β + γ + δ = m n \alpha+\beta+\gamma+\delta=\dfrac{m}{n} where m m and n n are co-prime positive integers.

What is the value of m + n m+n ?


The answer is 53.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let: a = x + y + z ; b = z + x y ; c = x + y z a=-x+y+z; b=z+x-y; c=x+y-z , we get: x = b + c 2 ; y = c + a 2 ; z = a + b 2 x=\dfrac{b+c}{2}; y=\dfrac{c+a}{2}; z=\dfrac{a+b}{2}

From the hypothesis, we have: a b + b c + c a = 1 ab+bc+ca=1 .

And 2 P = 2 ( 3 x + 2 y + 6 z ) = 8 a + 9 b + 5 c 2P=2(3x+2y+6z)=8a+9b+5c .

Applying the AM-GM inequality, we get:

( 8 a + 9 b + 5 c ) 2 = 64 a 2 + 81 b 2 + 25 c 2 + 144 a b + 90 b c + 80 c a = ( 64 a 2 + 16 c 2 ) + ( 81 b 2 + 9 c 2 ) + 144 a b + 90 b c + 80 c a 64 a c + 54 b c + 144 a b + 90 b c + 80 c a = 144 (8a+9b+5c)^2=64a^2+81b^2+25c^2+144ab+90bc+80ca\\ =(64a^2+16c^2)+(81b^2+9c^2)+144ab+90bc+80ca\\ \ge 64ac+54bc+144ab+90bc+80ca\\ =144

This implies that 8 a + 9 b + 5 c 12 8a+9b+5c\ge12 or 3 x + 2 y + 6 z 6 3x+2y+6z\ge6

The equality holds iff: x = 2 3 ; y = 3 4 ; z = 5 12 x=\dfrac{2}{3}; y=\dfrac{3}{4}; z=\dfrac{5}{12} .

We have: α = 6 ; β = 2 3 ; γ = 3 4 ; δ = 5 12 \alpha=6; \beta=\dfrac{2}{3}; \gamma=\dfrac{3}{4}; \delta=\dfrac{5}{12} and α + β + γ + δ = 47 6 \alpha+\beta+\gamma+\delta=\dfrac{47}{6}

So, we get m = 47 , n = 6 m=47, n=6 and m + n = 53 m+n=\boxed{53}

Nice method.However, I think Lagrange multipliers kills this problem.

Tobi Major - 5 years, 8 months ago

Log in to reply

No, Using Lagrangian multipliers will be bit lengthy calculation but very easy. By the way, Nice Method.

Surya Prakash - 5 years, 8 months ago

I'm not familiar with the very first substitution of a = x + y + z , b = z + x y , c = x + y z a=-x+y+z,b=z+x-y, c=x+y-z . May I know what technique is this?

Pi Han Goh - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...