Cool Integers

Given that a, b, and c are positive integers, solve the following equation. a!b! = a! + b! + c!

Find the value of a + b + c


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Anatoliy Razin
Nov 20, 2014

We can assume a b a \leq b

a = 1 a = 1 : b ! = 1 + b ! + c ! b! = 1 + b! + c! - no solutions

a = 2 a = 2 : 2 b ! = 2 + b ! + c ! b ! = 2 + c ! 2b! = 2 + b! + c! \Rightarrow b! = 2 + c! - no solutions

For a 3 a \geq 3 : if c b c \leq b then a ! + b ! + c ! 3 b ! < a ! b ! a! + b! + c! \leq 3b! < a!b! - therefore b < c b < c

Let p ( n ) = k p(n) = k be the integer value n = 2 k ( 2 m 1 ) n = 2^k(2m-1) for some positive integer m m

when p ( a ! ) < p ( b ! ) p(a!) < p(b!) we have

p ( a ! b ! ) 2 p ( a ! ) p(a!b!) \geq 2p(a!) and p ( a ! + b ! + c ! ) = p ( a ! ) p(a! + b! + c!) = p(a!) \Rightarrow no solutions for b > a + 1 b > a + 1

when b = a + 1 b = a + 1 :

a ! ( a + 1 ) ! = a ! + ( a + 1 ) ! + c ! a ! a!(a+1)! = a! + (a + 1)! + c! \Rightarrow a! divided by ( a + 1 ) ! (a+1)! - no solutions

finally when b = a b = a : ( a ! ) 2 = 2 a ! + c ! a ! = 2 + c ! a ! (a!)^2 = 2a! + c! \Rightarrow a! = 2 + \frac{c!}{a!}

if c a + 3 c \geq a + 3 , a ! 0 ( m o d 3 ) a! \equiv 0 \pmod{3} and 2 + c ! a ! 2 ( m o d 3 ) 2 + \frac{c!}{a!} \equiv 2 \pmod{3} - no solutions

if c = a + 2 c = a + 2 - either 2 + c ! a ! 2 ( m o d 3 ) 2 + \frac{c!}{a!} \equiv 2 \pmod{3} or 2 + c ! a ! 1 ( m o d 3 ) 2 + \frac{c!}{a!} \equiv 1 \pmod{3} - no solutions

the only possibility left: a = b , c = a + 1 a = b, c = a + 1

a ! a ! = 2 a ! + ( a + 1 ) ! a ! = 2 + a + 1 = a + 3 a! \cdot a! = 2a! + (a + 1)! \Rightarrow a! = 2 + a + 1 = a + 3 \Rightarrow

a = b = 3 , c = 4 a + b + c = 10 a = b = 3, c = 4 \Rightarrow a + b + c = \boxed{10}

hm... was it author's solution BTW? :-)

Muhammad Ihsan
May 4, 2015

a!b! - a! - b! + 1 = c! + 1

(a! - 1)(b! - 1) = c! + 1

a = 3, b = 3, c = 4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...