Cool Limits!!

Calculus Level 5

L = lim x 0 ( 2016 x ) ! 1 ( 2015 x ) ! 1 \Large L = \lim_{x \rightarrow 0} \dfrac{(2016x)!-1}{(2015x)!-1}

Find the value of 10000 L \lfloor 10000L \rfloor .


The answer is 10004.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tanishq Varshney
Oct 10, 2015

lim x 0 ( 2016 x ) ! 1 ( 2015 x ) ! 1 \large{\displaystyle \lim_{x\to 0} \frac{(2016x)!-1}{(2015x)!-1}}

Applying L-Hospital

lim x 0 2016 2015 × Γ ( 2016 x + 1 ) Γ ( 2015 x + 1 ) [ Γ ( x + 1 ) = x ! ] \large{\displaystyle \underset { x\rightarrow 0 }{ \lim }\frac{2016}{2015} \times \frac { { \Gamma }^{ \prime }\left( 2016x+1 \right) }{ { \Gamma }^{ \prime }\left( 2015x+1 \right) } \qquad \left[ \because \quad \Gamma \left( x+1 \right) =x! \right] }

we know ψ ( x ) = Γ ( x ) Γ ( x ) \large{\psi \left( x \right) =\frac { { \Gamma }^{ \prime }\left( x \right) }{ \Gamma \left( x \right) } }

where ψ ( x ) \psi (x) is digamma function and Γ ( x ) \Gamma (x) is gamma function.

2016 2015 lim x 0 ψ ( 2016 x + 1 ) Γ ( 2016 x + 1 ) ψ ( 2015 x + 1 ) Γ ( 2015 x + 1 ) \large{\frac{2016}{2015}\displaystyle \lim_{x\to 0} \frac { \psi \left( 2016x+1 \right) \Gamma \left( 2016x+1 \right) }{ \psi \left( 2015x+1 \right) \Gamma \left( 2015x+1 \right) } }

After applying the limit

we get 2016 2015 \large{\boxed{\frac{2016}{2015}}}

1 0 4 × 2016 2015 = 10004.9 \large{10^4 \times \frac{2016}{2015}=10004.9}

Chew-Seong Cheong
Oct 10, 2015

L = lim x 0 ( 2016 x ) ! 1 ( 2015 x ) ! 1 x ! = Γ ( x + 1 ) = lim x 0 Γ ( 2016 x + 1 ) 1 Γ ( 2015 x + 1 ) 1 Since L 0 0 , we can use l’H o ˆ pital’s rule. = lim x 0 d d x [ Γ ( 2016 x + 1 ) 1 ] d d x [ Γ ( 2015 x + 1 ) 1 ] = lim x 0 2016 Γ ( 2016 x + 1 ) ψ 0 ( 2016 x + 1 ) 2015 Γ ( 2015 x + 1 ) ψ 0 ( 2015 x + 1 ) = 2016 Γ ( 1 ) ψ 0 ( 1 ) 2015 Γ ( 1 ) ψ 0 ( 1 ) = 2016 2015 10000 L = 10004 \begin{array} {rll} L & = \displaystyle \lim_{x \to 0} \dfrac{(2016x)!-1}{(2015x)!-1} & \small \color{#3D99F6}{x! = \Gamma(x+1)} \\ & = \displaystyle \lim_{x \to 0} \dfrac{\Gamma(2016x+1)-1}{\Gamma(2015x+1)-1} & \small \color{#3D99F6}{\text{Since } L \to \frac{0}{0} \text{, we can use l'Hôpital's rule.}} \\ & = \displaystyle \lim_{x \to 0} \dfrac{\frac{d}{dx} [\Gamma (2016x+1)-1]}{\frac{d}{dx} [\Gamma (2015x+1)-1]} \\ & = \displaystyle \lim_{x \to 0} \dfrac{2016\Gamma (2016x+1) \psi_0 (2016x+1)}{2015\Gamma (2015x+1) \psi_0 (2015x+1)} \\ & = \dfrac{2016\Gamma (1) \psi_0 (1)}{2015\Gamma (1) \psi_0 (1)} \\ & = \dfrac{2016}{2015} \\ & \\ \Rightarrow \lfloor 10000L \rfloor & = \boxed{10004} \end{array}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...