Cool limit 2

Calculus Level 3

lim x π 6 2 3 cos x s i n x ( 6 x π ) 2 \lim _{ x\rightarrow \frac { \pi }{ 6 } }{ \frac { 2-\sqrt { 3 } \cos { x-sinx } }{ { \left( 6x-\pi \right) }^{ { 2 } } } } .

Value of above limit is of form p q \frac { p }{ q } . Then find p + q p+q .

Details:

P and q are co prime numbers.


The answer is 37.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Prasun Biswas
Nov 26, 2014

You can solve the limit using L'Hôpital's Rule as done in @B.S.Bharath Sai Guhan 's solution but I'll provide a solution without using it. So, here we go.

We'll use these 2 identities and some of the identities listed here to solve the problem:

1 cos x = 2 sin 2 ( x 2 ) cos ( x ± y ) = cos x cos y sin x sin y 1-\cos x=2\sin^2(\frac{x}{2}) \\ \cos(x\pm y)=\cos x \cos y \mp \sin x \sin y


Also, we will use the substitutions y = x π 6 y=x-\frac{\pi}{6} and z = y 2 z=\frac{y}{2} in the problem and we can see that x π 6 y 0 z 0 x\to \frac{\pi}{6} \implies y\to 0 \land z\to 0 . Now, let's start evaluating the limit.

lim x π 6 ( 2 3 cos x sin x ( 6 x π ) 2 ) = 2 lim x π 6 ( 1 3 2 cos x 1 2 sin x ( 6 x π ) 2 ) = 2 lim x π 6 ( 1 cos ( x π 6 ) ( 6 x π ) 2 ) = 2 lim y 0 ( 1 cos y ( 6 y ) 2 ) = 2 lim y 0 ( 2 sin 2 ( y 2 ) 36 y 2 ) = 2 2 36 ( 1 2 ) 2 ( lim z 0 ( sin z z ) ) 2 = 1 36 × 1 2 = 1 36 \displaystyle \lim_{x\to \frac{\pi}{6}} \bigg( \frac{2-\sqrt{3}\cos x - \sin x}{(6x- \pi)^2} \bigg) \\= \displaystyle 2\centerdot \lim_{x\to \frac{\pi}{6}} \bigg( \frac{1-\frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x}{(6x- \pi)^2} \bigg) \\= \displaystyle 2\centerdot \lim_{x\to \frac{\pi}{6}} \bigg( \frac{1-\cos(x-\frac{\pi}{6})}{(6x- \pi)^2} \bigg) \\= \displaystyle 2\centerdot \lim_{y\to 0} \bigg( \frac{1-\cos y}{(6y)^2} \bigg) \\= \displaystyle 2\centerdot \lim_{y\to 0} \bigg( \frac{2\sin^2(\frac{y}{2})}{36y^2} \bigg) \\= \displaystyle 2\centerdot \frac{2}{36}\centerdot(\frac{1}{2})^2\centerdot \bigg(\lim_{z\to 0} \bigg( \frac{\sin z}{z} \bigg)\bigg)^2 \\= \frac{1}{36}\times 1^2 = \boxed{\frac{1}{36}}

So, the limit is in the form of p q \frac{p}{q} with p = 1 , q = 36 p=1,q=36 and they are coprime numbers. So, the required value = p + q = 1 + 36 = 37 =p+q=1+36=\boxed{37}

Plug π 6 \displaystyle\frac{\pi}{6} into the function. We get the function value to be indeterminate i.e 0 0 \displaystyle\frac{0}{0}

Applying L'Hôpital's Rule, the limit becomes :

lim x π 6 3 s i n x c o s x 72 x 12 π \displaystyle\lim_{x\rightarrow \frac{\pi}{6}} \frac{\sqrt{3}sinx - cosx}{72x-12{\pi}}

Plugging in π 6 \displaystyle\frac{\pi}{6} into the function still results in 0 0 \displaystyle\frac{0}{0} .

Applying L'Hôpital's Rule once more, the limit becomes :

lim x π 6 3 cos x + sin x 72 \displaystyle\lim _{x\rightarrow \frac { \pi }{6}}{\quad\frac {\sqrt {3}\cos{x}+\sin{x}}{72}}

Plugging in π 6 \displaystyle\frac{\pi}{6} , and bringing the fraction to its lowest terms, we get 1 36 37 \frac{1}{36}\Rightarrow \boxed{37}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...