Cool Limit.

Calculus Level 4

lim x ( e x 4 + 1 e x 2 + 1 ) = ? \lim_{x \to \infty} \left( e^{\sqrt{x^4+1}}-e^{x^2+1} \right)= \ ?

1 e \frac{1}{e} e e 0 -\infty

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Discussions for this problem are now closed

Otto Bretscher
Mar 21, 2015

First we use conjugates to find lim x ( x 4 + 1 ( x 2 + 1 ) ) \lim_{x\to\infty}(\sqrt{x^4+1}-(x^2+1)) = lim x ( x 4 + 1 ( x 2 + 1 ) ) ( x 4 + 1 + ( x 2 + 1 ) ) x 4 + 1 + ( x 2 + 1 ) \lim_{x\to\infty}\frac{(\sqrt{x^4+1}-(x^2+1))(\sqrt{x^4+1}+(x^2+1))}{\sqrt{x^4+1}+(x^2+1)} = lim x 2 x 2 x 4 + 1 + ( x 2 + 1 ) \lim_{x\to\infty}\frac{-2x^2}{\sqrt{x^4+1}+(x^2+1)} = lim x 2 1 + 1 / x 4 + ( 1 + 1 / x 2 ) \lim_{x\to\infty}\frac{-2}{\sqrt{1+1/x^4}+(1+1/x^2)} = 1 -1 . Now lim x ( e x 4 + 1 e x 2 + 1 ) \lim_{x\to\infty}(e^{\sqrt{x^4+1}}-e^{x^2+1}) = lim x e x 2 + 1 ( e x 4 + 1 ( x 2 + 1 ) 1 ) \lim_{x\to\infty}e^{x^2+1}(e^{\sqrt{x^4+1}-(x^2+1)}-1) = -\infty since the first factor, e x 2 + 1 e^{x^2+1} , goes to infinity and the second factor goes to e 1 1 < 0 e^{-1}-1<0 .

Great solution!

Jordi Bosch - 6 years, 2 months ago
Ramez Hindi
Mar 21, 2015

Solution: we have e x 4 + 1 e x 2 + 1 = e x 4 + 1 ( 1 e x 2 + 1 e x 4 + 1 ) = e x 4 + 1 ( 1 e x 2 + 1 x 4 + 1 ) {{e}^{\sqrt{{{x}^{4}}+1}}}-{{e}^{{{x}^{2}}+1}}={{e}^{\sqrt{{{x}^{4}}+1}}}\left( 1-\frac{{{e}^{{{x}^{2}}+1}}}{{{e}^{\sqrt{{{x}^{4}}+1}}}} \right)={{e}^{\sqrt{{{x}^{4}}+1}}}\left( 1-{{e}^{{{x}^{2}}+1-\sqrt{{{x}^{4}}+1}}} \right)

So lim x ( e x 4 + 1 e x 2 + 1 ) = lim x e x 4 + 1 ( 1 lim x e x 2 + 1 x 4 + 1 ) \underset{x\to \infty }{\mathop{\lim }}\,\left( {{e}^{\sqrt{{{x}^{4}}+1}}}-{{e}^{{{x}^{2}}+1}} \right)=\underset{x\to \infty }{\mathop{\lim }}\,{{e}^{\sqrt{{{x}^{4}}+1}}}\left( 1-\underset{x\to \infty }{\mathop{\lim }}\,{{e}^{{{x}^{2}}+1-\sqrt{{{x}^{4}}+1}}} \right) but e $ e\$ is continuous function

So lim x e x 2 + 1 x 4 + 1 = e lim x ( x 2 + 1 x 4 + 1 ) \underset{x\to \infty }{\mathop{\lim }}\,{{e}^{{{x}^{2}}+1-\sqrt{{{x}^{4}}+1}}}={{e}^{\underset{x\to \infty }{\mathop{\lim }}\,\left( {{x}^{2}}+1-\sqrt{{{x}^{4}}+1} \right)}} but lim x ( x 2 + 1 x 4 + 1 ) = 1 \underset{x\to \infty }{\mathop{\lim }}\,\left( {{x}^{2}}+1-\sqrt{{{x}^{4}}+1} \right)=1

So lim x ( e x 4 + 1 e x 2 + 1 ) = e ( 1 e 0 ) = \underset{x\to \infty }{\mathop{\lim }}\,\left( {{e}^{\sqrt{{{x}^{4}}+1}}}-{{e}^{{{x}^{2}}+1}} \right)={{e}^{\infty }}\left( \underbrace{1-e}_{\le 0} \right)=-\infty

Note that , lim x ( x 2 + 1 x 4 + 1 ) = lim x ( x 2 + 1 x 4 ( 1 + 1 x 4 ) ) \underset{x\to \infty }{\mathop{\lim }}\,\left( {{x}^{2}}+1-\sqrt{{{x}^{4}}+1} \right)=\underset{x\to \infty }{\mathop{\lim }}\,\left( {{x}^{2}}+1-\sqrt{{{x}^{4}}\left( 1+\frac{1}{{{x}^{4}}} \right)} \right)

= lim x ( x 2 ( 1 1 + 1 x 4 ) + 1 ) = 1 + lim x x 2 ( 1 1 + 1 x 4 ) = 1 + ( 0 ) =\underset{x\to \infty }{\mathop{\lim }}\,\left( {{x}^{2}}\left( 1-\sqrt{1+\frac{1}{{{x}^{4}}}} \right)+1 \right)=1+\underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\left( 1-\sqrt{1+\frac{1}{{{x}^{4}}}} \right)=1+\infty \left( 0 \right)

But lim x x 2 ( 1 1 + 1 x 4 ) = lim x 1 1 + 1 x 4 1 x 2 \underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\left( 1-\sqrt{1+\frac{1}{{{x}^{4}}}} \right)=\underset{x\to \infty }{\mathop{\lim }}\,\frac{1-\sqrt{1+\frac{1}{{{x}^{4}}}}}{\frac{1}{{{x}^{2}}}}

Take u = 1 x 2 u 2 = 1 x 4 u=\frac{1}{{{x}^{2}}}\Rightarrow {{u}^{2}}=\frac{1}{{{x}^{4}}} as x x\xrightarrow{{}}\infty , u 0 u\xrightarrow{{}}0

So lim u 0 1 1 + u 2 u × 1 + 1 + u 2 1 + 1 + u 2 = lim u 0 1 ( 1 + u 2 ) u ( 1 + 1 + u 2 ) = lim u 0 u 2 u ( 1 + 1 + u 2 ) \underset{u\to 0}{\mathop{\lim }}\,\frac{1-\sqrt{1+{{u}^{2}}}}{u}\times \frac{1+\sqrt{1+{{u}^{2}}}}{1+\sqrt{1+{{u}^{2}}}}=\underset{u\to 0}{\mathop{\lim }}\,\frac{1-\left( 1+{{u}^{2}} \right)}{u\left( 1+\sqrt{1+{{u}^{2}}} \right)}=\underset{u\to 0}{\mathop{\lim }}\,\frac{-{{u}^{2}}}{u\left( 1+\sqrt{1+{{u}^{2}}} \right)}

= lim u 0 u 1 + 1 + u 2 = 0 1 + 1 = 0 2 = 0 =\underset{u\to 0}{\mathop{\lim }}\,\frac{-u}{1+\sqrt{1+{{u}^{2}}}}=\frac{0}{1+1}=\frac{0}{2}=0 Thus lim x x 2 ( 1 1 + 1 x 4 ) = 0 \underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\left( 1-\sqrt{1+\frac{1}{{{x}^{4}}}} \right)=0

Prakhar Gupta
Mar 20, 2015

The given expression is :- lim x ( e x 4 + 1 e x 2 + 1 ) \lim_{x\to\infty} \Bigg( e^{\sqrt{x^{4}+1}}-e^{x^{2}+1}\Bigg) We can write it in series form as follows:- lim x r = 0 ( ( x 4 + 1 ) r 2 r ! ( x 2 + 1 ) r r ! ) \lim_{x\to\infty} \sum_{r=0}^{\infty} \Bigg(\dfrac{(x^{4}+1)^{\frac{r}{2}}}{r!} - \dfrac{(x^{2}+1)^{r}}{r!}\Bigg) lim x r = 0 ( x 4 + 1 ) r 2 ( x 4 + 1 + 2 x 2 ) r 2 r ! \lim_{x\to\infty} \sum_{r=0}^{\infty} \dfrac{(x^{4}+1)^{\frac{r}{2}}-(x^{4}+1+2x^{2})^{\frac{r}{2}}}{r!} Here we see that in every term some negative quantity is added.

Hence when all such terms are added a large negative quantity is left which is -\infty .

Moderator note:

This solution has been marked wrong. You are not advised to post an antisolution as an official solution.

I see how you show that e x 4 + 1 e x 2 + 1 e^{\sqrt{x^4+1}}-e^{x^2+1} is negative for positive x x , due to the term 2 x 2 2x^2 . But how do you know that the limit is -\infty as x x goes to \infty ?

Otto Bretscher - 6 years, 2 months ago

Only one of the options showed a negative sign. So I chose it as an answer.

Prakhar Gupta - 6 years, 2 months ago

Based on your work alone, the limit could be 0, since e x 4 + 1 e x 2 + 1 e^{\sqrt{x^4+1}}-e^{x^2+1} could approach 0 from below as x x goes to \infty . I'm just playing the Devil's Advocate...

Otto Bretscher - 6 years, 2 months ago
Jake Lai
Mar 21, 2015

The inequality x 4 + 1 x 2 + 1 \sqrt{x^{4}+1} \leq x^{2}+1 is easy to prove.

Since d d x e x = e x \frac{d}{dx} e^{x} = e^{x} and e x > 0 e^{x} > 0 for all x R x \in \mathbb{R} , e x e^{x} is hence a strictly monotonically increasing function. Thus, e x 4 + 1 e x 2 + 1 e^{\sqrt{x^{4}+1}}-e^{x^{2}+1} is negative and unbounded, ie \rightarrow -\infty .

Moderator note:

As Otto Bretscher had pointed out: this solution is wrong. You should not jump to the conclusion that the it's unbounded simply because you shown that it's a strictly monotonically increasing function.

This is not convincing! You show that e x 4 + 1 e x 2 + 1 e^{\sqrt{x^4+1}}-e^{x^2+1} is negative (for positive x x ), but you don't show that it is unbounded.

Otto Bretscher - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...