cool limit

Calculus Level 4

lim n ( ( 1 + 1 n ) n ( 1 1 n ) n e 2 ) n 2 = a e 2 b \Large \lim_{n\to \infty} \large \left(\frac{ \left(1+\frac{1}{n}\right)^{n} }{\left(1-\frac{1}{n}\right)^{n}}-e^2\right)n^2= \frac{ae^2}{b}

The equation above holds true for coprime positive integers a a and b b . Find a + b a+b .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

敬全 钟
Sep 21, 2017

Since ( 1 + 1 n ) n ( 1 1 n ) n = ( 1 + 2 n 1 ) n , \frac{\left(1+\frac{1}{n}\right)^n}{\left(1-\frac{1}{n}\right)^n}=\left(1+\frac{2}{n-1}\right)^n, we let u = 1 n 1 n = 1 u + 1 u=\frac{1}{n-1}\Rightarrow n=\frac{1}{u}+1 so that ( 1 + 2 n 1 ) n = ( 1 + 2 u ) 1 u + 1 = ( 1 + 2 u ) ( exp ( 1 u ln ( 1 + 2 u ) ) ) = ( 1 + 2 u ) ( exp ( 2 2 u + 8 3 u 2 + O ( u 3 ) ) ) ( Maclaurin expansion of ln ( 1 + x ) = x x 2 2 + x 3 3 + O ( x 4 ) ) = ( 1 + 2 u ) ( e 2 × e 2 u × e 8 3 u 2 × exp ( O ( u 3 ) ) ) = ( 1 + 2 u ) ( e 2 ( 1 2 u + 2 u 2 ) ( 1 + 8 3 u 2 ) + O ( u 3 ) ) ( Maclaurin expansion of e x = 1 + x + x 2 2 ! + x 3 3 ! + O ( x 4 ) ) = e 2 ( 1 + 2 u 2 3 + O ( u 3 ) ) . \begin{aligned} \left(1+\frac{2}{n-1}\right)^n&=&(1+2u)^{\frac{1}{u}+1}\\ &=&(1+2u)\left(\exp\left(\frac{1}{u}\ln(1+2u)\right)\right)\\ &=&(1+2u)\left(\exp\left(2-2u+\frac{8}{3}u^2+\mathcal{O}(u^3)\right)\right) &&{\color{#3D99F6}(\text{Maclaurin expansion of }\ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}+\mathcal{O}(x^4))}\\ &=&(1+2u)\left(e^2\times e^{-2u}\times e^{\frac{8}{3}u^2}\times\exp(\mathcal{O}(u^3))\right)\\ &=&(1+2u)\left(e^2(1-2u+2u^2)(1+\frac{8}{3}u^2)+\mathcal{O}(u^3)\right) &&{\color{#3D99F6}(\text{Maclaurin expansion of }e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\mathcal{O}(x^4))}\\ &=&e^2\left(1+\frac{2u^2}{3}+\mathcal{O}(u^3)\right). \end{aligned} Substituting back the definition of u = 1 n 1 u=\frac{1}{n-1} , the result follows.

I find it easier to solve this if you apply m = 1 n m = \frac{1}{n} , then the question simplifies to a Maclaurin series to the 3rd term.

Pi Han Goh - 3 years, 8 months ago

Absolutely right with the way . Just recheck the expansion of the ln(1+x) in the blue.

Rakshit Joshi - 3 years, 8 months ago

Log in to reply

Thanks, I have rectified the error.

敬全 钟 - 3 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...