Cool Problem

Geometry Level 3

If the plane 6 x + 4 y + 3 z = 12 6x+4y+3z=12 cuts the x x -axis, y y -axis and z z -axis at A , B A,B and C C respectively, find the area of Δ A B C \Delta ABC .

31 \sqrt{31} 41 \sqrt{41} 51 \sqrt{51} 61 \sqrt{61}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Equation of the plane can be written as :

x 2 + y 3 + z 4 = 1 \begin{aligned} \frac{x}{2}+\frac{y}{3} + \frac{z}{4} = 1\end{aligned}

It cuts the x , y , z x,y,z axes at ( 2 , 0 , 0 ) , ( 0 , 3 , 0 ) , ( 0 , 0 , 4 ) (2,0,0),(0,3,0),(0,0,4)

Let's denote the points by A(2,0,0) , B(0,3,0) , C(0,0,4) \text{A(2,0,0) , B(0,3,0) , C(0,0,4)}

By distance formula , A B = 2 2 + 3 2 + 0 2 = 13 , B C = 0 2 + 3 2 + 4 2 = 5 , C A = 2 2 + 0 2 + 4 2 = 20 |AB| = \sqrt{2^2+3^2+0^2} =\sqrt{13},|BC|=\sqrt{0^2+3^2+4^2}=5,|CA|=\sqrt{2^2+0^2+4^2}=\sqrt{20}

c o s B = A B 2 + B C 2 C A 2 2. A B . B C = 13 + 25 20 10 13 = 9 5 13 cosB = \frac{AB^2+BC^2-CA^2}{2.AB.BC} = \frac{13+25-20}{10\sqrt{13}} = \frac{9}{5\sqrt{13}}

Δ A B C = 1 2 A B B C s i n B = 5 13 2 1 81 25.13 = 5 13 2 244 5 13 = 5 13 2 2 61 5 13 = 61 \Delta ABC = \frac{1}{2}|AB||BC|sinB= \frac{5\sqrt{13}}{2}\sqrt{1-\frac{81}{25.13}} = \frac{5\sqrt{13}}{2}\frac{\sqrt{244}}{5\sqrt{13}} = \frac{\cancel{5\sqrt{13}}}{\cancel{2}}\frac{\cancel{2}\sqrt{61}}{\cancel{5\sqrt{13}}} = \boxed{\sqrt{61}}

can we find the area by matrix match aftr finding A,B,C pts??

moumi roy - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...