The Reciprocal Of Infinity An Infinite Number Of Times

Calculus Level 2

lim n ( 1 n + 1 + 1 n + 2 + 1 n + 3 + + 1 n + n ) = ? \lim_{n\to \infty} \left( \dfrac1{n+1} + \dfrac1{n+2} + \dfrac1{n+3} + \cdots + \dfrac1{n+n} \right) = \, ?

0 0 ln 2 \ln2 2 2 \infty

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Rishabh Jain
Feb 29, 2016

Expression can be written as: lim n 1 n r = 1 ( 1 1 + r n ) \lim_{n\to \infty} \frac 1n \displaystyle \sum_{r=1}^{\infty} \left(\dfrac{1}{1+\frac rn}\right) = 0 1 d x 1 + x ~~~~~~~~~~~~~\Large =\int_{0}^{1}\dfrac{dx}{1+x}~~ ( See this ) = ln 2 =\huge \ln 2

how can i obtain the extrema of integration 0 and 1 from the first formula? Thank you in advance

guido barta - 5 years ago
Joe Lee
Feb 21, 2016

a n = i = 1 2 N 1 n i = 1 N 1 n = H 2 n H n a_n =\sum_{i=1}^{2N} \frac{1}{n} - \sum_{i=1}^N \frac{1}{n} = H_{2n} - H_{n}

Where H n H_n is a Harmonic number. Now from the integral test we have:

n n + 1 d t t 1 n n 1 n d t t \int_{n}^{n+1}\frac{dt}{t} \leq \frac{1}{n} \leq \int_{n-1}^{n} \frac{dt}{t}

1 N + 1 d t t 1 N 1 n 1 + 1 N d t t \int_{1}^{N+1}\frac{dt}{t} \leq \sum_1^N \frac{1}{n} \leq 1 + \int_{1}^{N} \frac{dt}{t}

ln ( N + 1 ) ln 1 H n 1 + ln ( N ) ln 1 \ln(N+1) - \ln{1} \leq H_n \leq 1 + \ln(N) - \ln{1}

ln ( N + 1 ) H n 1 + ln ( N ) \ln(N+1) \leq H_n \leq 1 + \ln(N)

ln ( 2 N + 1 ) H 2 n 1 + ln ( 2 N ) \ln(2N+1) \leq H_{2n} \leq 1 + \ln(2N)

Taking the difference we get:

ln ( 2 N + 1 ) ln ( N + 1 ) H 2 n H n 1 + ln ( 2 N ) ( 1 + ln ( N ) ) \ln(2N+1) - \ln(N+1) \leq H_{2n} - H_{n} \leq 1 + \ln(2N) - \left(1 + \ln(N) \right) ln ( 2 N + 1 N + 1 ) H 2 n H n ln ( 2 ) \ln(\frac{2N+1}{N+1}) \leq H_{2n} - H_{n} \leq \ln(2)

lim n 2 n + 1 n + 1 = 2 \lim_{n \to \infty} \frac{2n+1}{n+1} = 2 (L'Hopital)

Therefore by the Squeeze Theorem we get:

ln ( 2 ) a n ln ( 2 ) \ln(2) \leq a_n \leq \ln(2)

l i m n a n = ln 2 \because lim_{n \to \infty} a_n = \ln{2}

In general: For two Harmonic numbers H p n H_{pn} and H q n H_{qn} where p q p \ge q

lim n H p n H q n = l n ( p q ) \lim_{n \to \infty} H_{pn} - H_{qn} = ln(\frac{p}{q})

a oneliner is that H n = γ + ln ( n ) H_n=-\gamma+\ln(n) if n tends to infinity.

Aareyan Manzoor - 5 years, 3 months ago

Log in to reply

Yea I knew that but for people who haven't taken higher level courses may not know that so I gave a more accessible solution.

Joe Lee - 5 years, 3 months ago
Ashish Menon
Mar 7, 2016

First calculate n = 1 10 1 10 + n \sum_{n=1}^{10} \Large \frac {1}{10+n} = 0.69315 0.69315
n = 1 100 1 100 + n \sum_{n=1}^{100} \Large \frac {1}{100+n} = 0.69315 0.69315
n = 1 1000 1 1000 + n \sum_{n=1}^{1000} \Large \frac {1}{1000+n} = 0.69315 0.69315
n = 1 10000 1 10000 + n \sum_{n=1}^{10000} \Large \frac {1}{10000+n} = 0.69315 0.69315
l n ( 2 ) = 0.69315 ln(2) = 0.69315 .
So, then answer is l n ( 2 ) ln(2) . _\square



Rindell Mabunga
Feb 25, 2016

Riemann sum form of the integral of d x x \frac{dx}{x} from 1 to 2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...