Cool series

Algebra Level 5

1 2 4 + 1 3 2 4 6 + 1 3 5 2 4 6 8 + 1 3 5 7 2 4 6 8 10 + = ? \large \dfrac1{2\cdot4} + \dfrac{1\cdot3}{2\cdot4\cdot6}+ \dfrac{1\cdot3\cdot5}{2\cdot4\cdot6\cdot8}+ \dfrac{1\cdot3\cdot5\cdot7}{2\cdot4\cdot6\cdot8\cdot10} + \ldots = \ ?


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Otto Bretscher
Sep 26, 2015

By the binomial series, 1 x = k = 0 ( 1 / 2 k ) ( x ) k = 1 1 2 x k = 2 ( 2 k 3 ) ! ! 2 k k ! x k \sqrt{1-x}=\sum_{k=0}^{\infty}{1/2\choose{k}}(-x)^k=1-\frac{1}{2}x-\sum_{k=2}^{\infty}\frac{(2k-3)!!}{2^kk!}x^k evaluated at x = 1 x=1 , we have k = 2 ( 2 k 3 ) ! ! 2 k k ! = 1 1 2 = 1 2 \sum_{k=2}^{\infty}\frac{(2k-3)!!}{2^kk!}= 1-\frac{1}{2}=\boxed{\frac{1}{2}}

Did the exact same

Aditya Kumar - 5 years ago
Michael Ng
Oct 3, 2015

Note that 1 2 × 4 = 1 × 2 × 3 × 4 2 2 × 4 2 × 3 = 4 ! ( 2 2 × 2 ! ) 2 × 3 = 4 ! ( 2 ! ) 2 × 4 2 × 3 = ( 4 2 ) 4 2 × 3 \frac{1}{2\times4} = \frac{1\times 2 \times 3 \times 4}{2^2\times4^2\times 3} = \frac{4!}{(2^2\times 2!)^2 \times 3} = \frac{4!}{(2!)^2 \times 4^2\times 3} = \frac{4\choose2}{4^2\times3} So we have ( 4 2 ) 3 × 4 2 + ( 6 3 ) 5 × 4 3 + ( 8 4 ) 7 × 4 4 + \frac{4\choose2}{3\times 4^2} + \frac{6\choose3}{5\times 4^3} + \frac{8\choose4}{7\times 4^4} + \cdots But in fact ( 4 2 ) 3 = 2 C 1 \frac{4\choose2}{3} = 2C_1 where C 1 C_1 is the first Catalan Number. The pattern continues so using a generating function for the Catalan numbers, we can enumerate the value of the series. So S = 2 ( C 1 x 2 + C 2 x 3 + ) = 2 x ( C 1 x + C 2 x 2 + ) = 2 x ( 1 1 4 x 2 x 1 ) S = 2(C_1x^2+C_2x^3+\cdots) = 2x(C_1x+C_2x^2 + \cdots) = 2x\left(\frac{1-\sqrt{1-4x}}{2x}-1\right) evaluated at x = 1 4 x=\frac14 .

This gives S = 2 ( 1 4 ) ( 2 1 ) = 1 2 S = 2\left(\frac14\right)(2-1) = \boxed{\frac12} as required.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...