Coordinate Coordinate!!!

Geometry Level 5

Let A = ( 0 , 0 ) , B = ( 1 , 1 ) , C = ( x , y ) A=(0,0), B=(-1,-1), C=(x,y) and D = ( x + 1 , y ) D=(x+1,y) where x > y x>y are positive integers. Suppose the points A , B , C , D A,B,C,D lie on a circle with radius r r . Denote by r 1 r_{1} and r 2 r_{2} the smallest and the second smallest possible values of r r . Compute r 1 2 + r 2 2 r_{1}^{2}+r_{2}^{2} .


The answer is 2523.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 14, 2015

Let the center of the circle be O O and its radius r r . From the coordinates of A A , B B , C C and D D , we know that O O has a positive x x -coordinate a a and negative y y -coordinate b b , that is O ( a , b ) O(a,-b) . And we note that a = x + x + 1 2 = x + 1 2 a=\dfrac{x+x+1}{2} = x + \frac{1}{2} .

From the coordinates, we have:

{ O A : a 2 + b 2 = r 2 O B : ( a + 1 ) 2 + ( b 1 ) 2 = r 2 O C : ( y + b ) 2 + 1 4 = r 2 \begin{cases} OA: & a^2+b^2 & = r^2 \\ OB: & (a+1)^2+(b-1)^2 & = r^2 \\ OC: & (y+b)^2 +\frac{1}{4} & = r^2 \end{cases}

\(\begin{array} {} OA = OB: & a^2+b^2 = (a+1)^2+(b-1)^2 = a^2 + 2a + 1 + b^2 -2b + 1 \\ & \Rightarrow 2a-2b+2 = 0 \quad \Rightarrow b = a + 1 = x + \frac{3}{2} \\ OA= OC: & a^2+b^2 = (y+b)^2 +\frac{1}{4} = y^2 + 2by + b^2 + \frac{1}{4} \\ & \Rightarrow y^2 + 2by + \frac{1}{4} - a^2 = 0 \\ & \quad y^2 + 2by + \frac{1}{4} - \left(x^2 + x + \frac{1}{4} \right) = 0 \\ & \quad y^2 + (2x+3) y - x^2 - x = 0 \end{array} \)

For integer value of y ( 2 x + 3 ) 2 + 4 ( x 2 + x ) = 8 x 2 + 16 x + 9 y \Longrightarrow (2x+3)^2 + 4(x^2+x) = 8x^2 + 16x + 9 must be a perfect square. And the two smallest x > 0 x > 0 , when this occurs, are:

{ x = 5 a = 5.5 b = 6.5 r 1 2 = 5. 5 2 + 6. 5 2 = 72.5 x = 34 a = 34.5 b = 35.5 r 2 2 = 34. 5 2 + 35. 5 2 = 2450.5 \begin{cases} x = 5 & \Rightarrow a = 5.5 & \Rightarrow b = 6.5 & \Rightarrow r_1^2 = 5.5^2 + 6.5^2 & = 72.5 \\ x = 34 & \Rightarrow a = 34.5 & \Rightarrow b = 35.5 & \Rightarrow r_2^2 = 34.5^2+35.5^2 & = 2450.5 \end{cases}

r 1 2 + r 2 2 = 72.5 + 2450.5 = 2523 \Rightarrow r_1^2 + r_2^2 = 72.5 + 2450.5 = \boxed{2523}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...