Let and where are positive integers. Suppose the points lie on a circle with radius . Denote by and the smallest and the second smallest possible values of . Compute .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let the center of the circle be O and its radius r . From the coordinates of A , B , C and D , we know that O has a positive x -coordinate a and negative y -coordinate b , that is O ( a , − b ) . And we note that a = 2 x + x + 1 = x + 2 1 .
From the coordinates, we have:
⎩ ⎪ ⎨ ⎪ ⎧ O A : O B : O C : a 2 + b 2 ( a + 1 ) 2 + ( b − 1 ) 2 ( y + b ) 2 + 4 1 = r 2 = r 2 = r 2
\(\begin{array} {} OA = OB: & a^2+b^2 = (a+1)^2+(b-1)^2 = a^2 + 2a + 1 + b^2 -2b + 1 \\ & \Rightarrow 2a-2b+2 = 0 \quad \Rightarrow b = a + 1 = x + \frac{3}{2} \\ OA= OC: & a^2+b^2 = (y+b)^2 +\frac{1}{4} = y^2 + 2by + b^2 + \frac{1}{4} \\ & \Rightarrow y^2 + 2by + \frac{1}{4} - a^2 = 0 \\ & \quad y^2 + 2by + \frac{1}{4} - \left(x^2 + x + \frac{1}{4} \right) = 0 \\ & \quad y^2 + (2x+3) y - x^2 - x = 0 \end{array} \)
For integer value of y ⟹ ( 2 x + 3 ) 2 + 4 ( x 2 + x ) = 8 x 2 + 1 6 x + 9 must be a perfect square. And the two smallest x > 0 , when this occurs, are:
{ x = 5 x = 3 4 ⇒ a = 5 . 5 ⇒ a = 3 4 . 5 ⇒ b = 6 . 5 ⇒ b = 3 5 . 5 ⇒ r 1 2 = 5 . 5 2 + 6 . 5 2 ⇒ r 2 2 = 3 4 . 5 2 + 3 5 . 5 2 = 7 2 . 5 = 2 4 5 0 . 5
⇒ r 1 2 + r 2 2 = 7 2 . 5 + 2 4 5 0 . 5 = 2 5 2 3