Converging Points

Geometry Level 2

{ A n + 1 = α A n + ( 1 α ) B n B n + 1 = α B n + ( 1 α ) C n C n + 1 = α C n + ( 1 α ) A n \large {\left\{\begin{matrix}A_{n+1}=\alpha A_n+(1-\alpha)B_n \\ B_{n+1}=\alpha B_n+(1-\alpha)C_n \\ C_{n+1}=\alpha C_n+(1-\alpha)A_n\end{matrix}\right.}

Let A 1 , B 1 , C 1 A_1,B_1,C_1 be three distinct non-collinear points on the coordinate plane.
Also A n , B n , C n A_n,B_n,C_n satisfy the recurrence relation above ( 0 < α < 1 0<\alpha<1 ).

Then lim n A n \displaystyle\lim_{n\to\infty}A_n is the __________ \text{\_\_\_\_\_\_\_\_\_\_} of the triangle A 1 B 1 C 1 A_1B_1C_1 .

Orthocenter A n = A 1 A_n=A_1 Incenter Centroid Circumcenter

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Eric Chan
Mar 25, 2016

Expanding the equations given, we get :

A n + 1 + B n + 1 + C n + 1 = A n + B n + C n A_{n+1}+B_{n+1}+C_{n+1} = A_n+B_n+C_n

i.e. sum of coordinates are always the same regardless of n n .

\implies centroid are the same.(which is the centre of mass)

Of course, we have to show that the limit exists ...

Calvin Lin Staff - 5 years, 2 months ago

Log in to reply

It can be shown by considering the sequence: { a n } = A n B n \{a_n\}=A_nB_n which is a GS with 0 < r < 1 0<r<1 ...
OMG I forgot to specify 0 < α < 1 0<\alpha<1 ... edited, thanks!

展豪 張 - 5 years, 2 months ago

Cool solution!

展豪 張 - 5 years, 2 months ago

is there a way to prove that the average of the coordinates give you the centroid?

Willia Chang - 4 years, 11 months ago
Caique Harger
Mar 23, 2016

I do not nos how to actually prove it matematically but as an bn and cn Grow the sabe way as n Grows, it only could be the centroid. AM I wrong?

Writing in matrix form:
[ A n + 1 B n + 1 C n + 1 ] = [ α 1 α 0 0 α 1 α 1 α 0 α ] [ A n B n C n ] \begin{bmatrix}A_{n+1} \\ B_{n+1} \\ C_{n+1} \end{bmatrix}=\begin{bmatrix}\alpha & 1-\alpha & 0 \\ 0 & \alpha & 1-\alpha \\ 1-\alpha & 0 & \alpha \end{bmatrix} \begin{bmatrix}A_n \\ B_n \\ C_n \end{bmatrix}
or
[ A n + 1 B n + 1 C n + 1 ] = [ α 1 α 0 0 α 1 α 1 α 0 α ] n [ A 1 B 1 C 1 ] \begin{bmatrix}A_{n+1} \\ B_{n+1} \\ C_{n+1} \end{bmatrix}=\begin{bmatrix}\alpha & 1-\alpha & 0 \\ 0 & \alpha & 1-\alpha \\ 1-\alpha & 0 & \alpha \end{bmatrix}^n \begin{bmatrix}A_1 \\ B_1 \\ C_1 \end{bmatrix}
Now consider the 3 3 by 3 3 matrix as a matrix of Markov Chain.
By symmetry, lim n [ α 1 α 0 0 α 1 α 1 α 0 α ] n = [ 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 ] \displaystyle \lim_{n\to\infty}\begin{bmatrix}\alpha & 1-\alpha & 0 \\ 0 & \alpha & 1-\alpha \\ 1-\alpha & 0 & \alpha \end{bmatrix}^n=\begin{bmatrix}\frac 13 & \frac 13 & \frac 13 \\ \frac 13 & \frac 13 & \frac 13 \\ \frac 13 & \frac 13 & \frac 13 \end{bmatrix}
So A = B = C = 1 3 ( A 1 + B 1 + C 1 ) = A_\infty=B_\infty=C_\infty=\frac 13 (A_1+B_1+C_1)= centroid of triangle A 1 B 1 C 1 A_1B_1C_1 .

展豪 張 - 5 years, 2 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...