Coordinated Trouble #3

Geometry Level 4

G i s t h e c e n t r o i d o f t h e t r i a n g l e h a v i n g v e r t i c e s A ( 3 , 12 ) , B ( 6 , 6 ) , C ( 9 , 18 ) . F i n d t h e v a l u e o f P A 2 + P B 2 + P C 2 G A 2 G B 2 G C 2 , w h e r e P i s ( 5 , 10 ) . G\quad is\quad the\quad centroid\quad of\quad the\\ triangle\quad having\quad vertices\quad \\ A(3,12),\quad B(6,6),\quad C(9,18).\\ Find\quad the\quad value\quad of\\ { { PA }^{ 2 } }{ +PB }^{ 2 }{ +PC }^{ 2 }{ -GA }^{ 2 }{ -GB }^{ 2 }{ -GC }^{ 2 },\\ where\quad P\quad is\quad (5,10).


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

G ( 3 + 6 + 9 3 , 12 + 6 + 18 3 ) = G ( 6 , 12 ) . Change of axis does not alter the relative distances between the points, so the result in this problem also is not altered. Let G’ be the new origin. S o A ( 3 , 0 ) , B ( 0 , 6 ) , C ( 3 , 6 ) , G ( 0 , 0 ) , P ( 1 , 2 ) . R e q u i r e d v a l u e = P A 2 + P B 2 + P C 2 ( G A 2 + G B 2 + G C 2 ) R e q u i r e d v a l u e = 2 2 + 2 2 + 1 2 + 4 2 + 4 2 + 8 2 ( 3 2 + 0 + 0 + 6 2 + 3 2 + 6 2 ) R e q u i r e d v a l u e = 8 + 17 + 80 ( 9 + 36 + 45 ) = 15. G \Big(\dfrac{3+6+9} 3, \dfrac{12+6+18} 3 \Big)=G(6,12).\\ \text{Change of axis does not alter the relative distances between the points, so the result in this problem also is not altered.} \\ \text{Let G' be the new origin.} ~\\ So~~~A' (-3,0),~~~~~ B' (0,-6),~~~~~ C' (3,6),~~~~~ G' (0,0),~~~~~ P' (-1,-2).\\ Required ~value=P'A'^2+P'B'^2+P'C'^2 - (G'A'^2+G'B'^2+G'C'^2) \\ Required ~value=2^2+2^2 ~~~+~1^2+4^2~~~+~4^2+8^2 ~~~~-~~~~(3^2+0~~~~+~~0+6^2~~~~+~~3^2+6^2)\\ Required ~value=8 + 17 + 80 - (9 + 36 + 45)=\Large~~~\color{#D61F06}{15}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...