Coordinated Trouble #4

Geometry Level 3

G i v e n a t r i a n g l e h a v i n g v e r t i c e s A ( 2 , 11 2 ) , B ( 1 , 1 ) , C ( 13 , 2 3 ) . I f X = A B 2 + A C 2 & Y = A D 2 + D C 2 . F i n d X Y , i f D i s t h e m i d p o i n t o f B C . Given\quad a\quad triangle\quad having\quad vertices\quad \\ A(2,\frac { 11 }{ 2 } ),\quad B(1,1),\quad C(13,\frac { 2 }{ 3 } ).\\ If\quad X={ AB }^{ 2 }+{ AC }^{ 2 }\quad \& \quad Y={ AD }^{ 2 }+{ DC }^{ 2 }.\\ Find\quad \frac { X }{ Y } ,if\quad D\quad is\quad the\quad midpoint\quad of\quad BC.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Samyak Jain
Nov 25, 2014

D is the midpoint of BC therefore AD is the median BY USING APOLLONIUS THEOREM, AB^{2}+AC^{2}=2(AD^{2}+DC^{2}) THEREFORE X=2Y X/Y=2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...