Coordinates of point F F

Geometry Level 3

A B C \triangle ABC is right at A ( 0 , 0 ) A(0, 0) , with vertex B = ( 0 , 4 ) B= (0,4) , and vertex C = ( 3 , 0 ) C =(3,0) . Segment A C AC is extended to point D D such that the incircles of B C D \triangle BCD and A B C \triangle ABC have the same radius. If the incenter of B C D \triangle BCD is point F ( x , y ) F (x, y) , find x + y x+y .

Related Problem


The answer is 4.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chris Lewis
Dec 17, 2020

The inradius is r = 3 + 4 5 2 = 1 r=\frac{3+4-5}{2}=1 . Putting an origin at A A , the point F F lies on the angle bisector of B C D \angle BCD and on the line y = 1 y=1 .

So F F has coordinates F ( 3 + cot B C D 2 , 1 ) F \left(3+\cot \frac{\angle BCD}{2},1 \right)

We have B C D = π A C B \angle BCD = \pi-\angle ACB and tan A C B = 4 3 \tan \angle ACB=\frac43 . Hence cot B C D 2 = 1 2 \cot \frac{\angle BCD}{2}=\frac12 and F ( 7 2 , 1 ) F\left(\frac72,1\right) giving the answer 4.5 \boxed{4.5} .

Chew-Seong Cheong
Dec 17, 2020

A B C \triangle ABC is a 3 3 - 4 4 - 5 5 triangle, therefore B C = 5 BC=5 . Then the area of triangle [ A B C ] = 4 × 3 2 = 6 = s r [ABC] = \dfrac {4 \times 3}2 = 6 = sr , where s s is the semiperimeter of the triangle and r r , the radius of the incircle. Therefore 3 + 4 + 5 2 r = 6 r = 1 \dfrac {3+4+5}2 r = 6 \implies r = 1 , Let F G FG be perpendicular to A D AD . Then y = F G = 1 y = FG = 1 . And

x = A G = A C + C G = 3 + F G cot F C D Note that F C D = B C D 2 = 3 + cot ( B C D 2 ) = 3 + cot ( 18 0 B C A 2 ) Let B C A = θ = 3 + cot ( 9 0 θ 2 ) = 3 + tan θ 2 = 3 + 1 cos θ sin θ = 3 + 1 3 5 4 5 = 3 + 1 2 = 3.5 \begin{aligned} x & = AG = AC + CG = 3 + FG \cdot \cot \blue{\angle FCD} & \small \blue{\text{Note that }\angle FCD = \frac {\angle BCD}2} \\ & = 3+ \cot \blue{\left(\frac {\angle BCD}2 \right)} = 3+ \cot \left(\frac {180^\circ - \red{\angle BCA}}2 \right) & \small \red{\text{Let }\angle BCA = \theta} \\ & = 3 + \cot \left(90^\circ - \frac \red \theta 2 \right) = 3 + \tan \frac \theta 2 = 3 + \frac {1-\cos \theta}{\sin \theta} \\ & = 3 + \frac {1-\frac 35}{\frac 45} = 3 + \frac 12 = 3.5 \end{aligned}

Therefore x + y = 3.5 + 1 = 4.5 x+y = 3.5 + 1 = \boxed{4.5} ,

The inradius of the 3 3 - 4 4 - 5 5 right triangle is equal to 1, hence point E E has coordinates ( 1 , 1 ) \left( 1,1 \right) . Since the two circles are congruent, the y-coordinate of F F is equal to 1. Let x x be the x-coordinate of F F .

Focusing on the vectors C F = ( x F x C y F y C ) = ( x 3 1 0 ) = ( x 3 1 ) \overrightarrow{CF}=\left( \begin{matrix} {{x}_{F}}-{{x}_{C}} \\ {{y}_{F}}-{{y}_{C}} \\ \end{matrix} \right)=\left( \begin{matrix} x-3 \\ 1-0 \\ \end{matrix} \right)=\left( \begin{matrix} x-3 \\ 1 \\ \end{matrix} \right) and C E = ( x E x C y E y C ) = ( 1 3 1 0 ) = ( 2 1 ) \overrightarrow{CE}=\left( \begin{matrix} {{x}_{E}}-{{x}_{C}} \\ {{y}_{E}}-{{y}_{C}} \\ \end{matrix} \right)=\left( \begin{matrix} 1-3 \\ 1-0 \\ \end{matrix} \right)=\left( \begin{matrix} -2 \\ 1 \\ \end{matrix} \right) , we have

C F C E C F C E = 0 ( x 3 1 ) ( 2 1 ) = 0 2 ( x 3 ) + 1 = 0 x = 3.5 \overrightarrow{CF}\bot \overrightarrow{CE}\Leftrightarrow \overrightarrow{CF}\cdot \overrightarrow{CE}=0\Leftrightarrow \left( \begin{matrix} x-3 \\ 1 \\ \end{matrix} \right)\left( \begin{matrix} -2 \\ 1 \\ \end{matrix} \right)=0\Leftrightarrow -2\left( x-3 \right)+1=0\Leftrightarrow x=3.5 Hence, x F + y F = 3.5 + 1 = 4.5 {{x}_{F}}+{{y}_{F}}=3.5+1=\boxed{4.5} .

Hosam Hajjir
Dec 17, 2020

From the previous problem, we found that C D = 4.5 \overline{CD} = 4.5

Therefore, the coordinates of the vertices of B C D \triangle BCD are

B ( 0 , 4 ) , C ( 3 , 0 ) , D ( 7.5 , 0 ) B(0, 4) , C(3, 0), D(7.5, 0)

And the side lengths are b = 4.5 , c = 4 2 + 7. 5 2 = 8.5 , d = 5 b = 4.5 , c = \sqrt{4^2 + 7.5^2} = 8.5 , d = 5

Hence, the coordinates of the incenter F F are

F = ( x , y ) = b b + c + d B + c b + c + d C + d b + c + d D F = (x, y) = \dfrac{b}{b + c + d} B + \dfrac{c}{b + c + d } C + \dfrac{d}{b+c+d} D

Substituting the numerical values,

( x , y ) = 4.5 18 ( 0 , 4 ) + 8.5 18 ( 3 , 0 ) + 5 18 ( 7.5 , 0 ) = ( 0 , 1 ) + ( 17 12 , 0 ) + ( 25 12 , 0 ) = ( 7 2 , 1 ) = ( 3.5 , 1 ) (x, y) = \dfrac{4.5}{18} (0, 4) + \dfrac{8.5}{18} (3, 0) + \dfrac{5}{18}(7.5, 0) = (0, 1) + ( \dfrac{17}{12} , 0 ) + (\dfrac{25}{12} , 0) = ( \dfrac{7}{2} , 1 ) = (3.5, 1)

Hence x + y = 4.5 x + y = \boxed{4.5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...