cos 3 6 \cos 36^\circ

Calculus Level 2

What is cos 3 6 \cos36^\circ ?

5 + 2 10 \frac{5+\sqrt2}{10} 2 + 5 8 \frac{2+\sqrt5}{8} 1 + 5 4 \frac{1+\sqrt5}{4} 5 3 \frac{\sqrt5}{3} 1 + 2 5 \frac{1+\sqrt2}{5}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Achmad Damanhuri
Apr 8, 2019

Let θ = 1 8 \theta=18^\circ so that 2 θ = 3 6 2\theta=36^\circ and 3 θ = 5 4 3\theta=54^\circ so, cos 5 4 = cos ( 9 0 3 6 ) = sin 3 6 \cos54^\circ=\cos(90^\circ-36^\circ)=\sin36^\circ Or we can write it as cos 3 θ = sin 2 θ \cos3\theta=\sin2\theta Let’s see sin 2 θ = 2 sin θ cos θ = 2 cos θ 1 cos 2 θ \sin2\theta=2\sin\theta\cos\theta\\=2\cos\theta\sqrt{1-\cos^2\theta} Denote cos θ = x \cos\theta=x We have sin 2 θ = 2 x 1 x 2 \sin2\theta=2x\sqrt{1-x^2} And we have cos 3 θ = 4 c o s 3 θ 3 cos θ = 4 x 3 3 x \cos3\theta=4cos^3\theta-3\cos\theta=4x^3-3x Then, 2 x 1 x 2 = 4 x 3 3 x 16 x 4 20 x 2 + 5 = 0 2x\sqrt{1-x^2}=4x^3-3x\\16x^4-20x^2+5=0 We denote y = x 2 y=x^2 16 y 2 20 y + 5 = 0 16y^2-20y+5=0 So we get x 2 = y 1 , 2 = 5 ± 5 8 x^2=y_{1,2}=\frac{5\pm\sqrt5}{8} We discard the smaller root. And by double angle formula cos 2 θ = 2 cos 2 θ 1 = 2 x 2 1 = 1 + 5 4 \cos2\theta=2\cos^2\theta-1\\=2x^2-1\\=\frac{1+\sqrt5}{4}

It's a easy one

Nitin Upadhyay - 1 year, 4 months ago
David Vreken
Apr 9, 2019

Consider a pentagram with an exterior regular pentagon A B C D E ABCDE with unit sides and an interior regular pentagon F G H I J FGHIJ with x x sides:

By symmetry, A E = E G = 1 AE = EG = 1 , so E F = E G F G = 1 x EF = EG - FG = 1 - x . Also by symmetry, E F = A F = A G = 1 x EF = AF = AG = 1 - x .

As interior angles of a regular pentagon, J F G = E A B = 108 ° \angle JFG = \angle EAB = 108° , so by vertical angles E F A = 108 ° \angle EFA = 108° , and as base angles of an isosceles E F A \triangle EFA , A E F = E A F = 1 2 ( 180 ° 108 ° ) = 36 ° \angle AEF = \angle EAF = \frac{1}{2}(180° - 108°) = 36° . Also by symmetry, G A B = E A F = 36 ° \angle GAB = \angle EAF = 36° , so G A F = E A B E A F G A B \angle GAF = \angle EAB - \angle EAF - \angle GAB = = 108 ° 36 ° 36 ° = 36 ° 108° - 36° - 36° = 36° . Therefore, E A G A F G \triangle EAG \sim \triangle AFG by SAS similarity.

Since E A G A F G \triangle EAG \sim \triangle AFG , A E A G = A G F G \frac{AE}{AG} = \frac{AG}{FG} or 1 1 x = 1 x x \frac{1}{1 - x} = \frac{1 - x}{x} , which solves to x = 3 5 2 x = \frac{3 - \sqrt{5}}{2} for x < 1 x < 1 .

From right A E K \triangle AEK , cos A E K = E K A E \cos \angle AEK = \frac{EK}{AE} , or cos 36 ° = 1 x + 1 2 x 1 \cos 36° = \frac{1 - x + \frac{1}{2}x}{1} . Substituting x = 3 5 2 x = \frac{3 - \sqrt{5}}{2} from above and simplifying gives cos 36 ° = 1 + 5 4 \cos 36° = \boxed{\frac{1 + \sqrt{5}}{4}} .

Chew-Seong Cheong
Apr 10, 2019

Using the identity: k = 1 n cos ( 2 k 1 2 n + 1 π ) = 1 2 \displaystyle \sum_{k=1}^n \cos \left(\frac {2k-1}{2n+1}\pi \right) = \frac 12 ,

cos π 5 + cos 3 π 5 = 1 2 Note that cos ( π θ ) = cos θ cos π 5 cos 2 π 5 = 1 2 and cos 2 θ = 2 cos 2 θ 1 cos π 5 2 cos 2 π 5 + 1 = 1 2 4 cos 2 π 5 2 cos π 5 1 = 0 cos π 5 = 1 + 5 4 Since cos π 5 > 0 \begin{aligned} \cos \frac \pi 5 \color{#3D99F6} + \cos \frac {3\pi}5 & = \frac 12 & \small \color{#3D99F6} \text{Note that }\cos (\pi - \theta) = - \cos \theta \\ \cos \frac \pi 5 \color{#3D99F6} - \cos \frac {2\pi}5 & = \frac 12 & \small \color{#3D99F6} \text{and }\cos 2 \theta = 2 \cos^2 \theta - 1 \\ \cos \frac \pi 5 - 2 \cos^2 \frac \pi 5 + 1 & = \frac 12 \\ 4 \cos^2 \frac \pi 5 - 2 \cos \frac \pi 5 - 1 & = 0 \\ \implies \cos \frac \pi 5 & = \boxed{\dfrac {1+\sqrt 5}4} & \small \color{#3D99F6} \text{Since }\cos \frac \pi 5 > 0 \end{aligned}

Mr. India
Apr 8, 2019

In a 3 4 5 3-4-5 right triangle, the smallest angle is 3 7 37^\circ

So, c o s 3 7 = 4 5 = 0.8 cos37^\circ=\frac{4}{5}=0.8

As c o s x cosx decreases with increase in x x ( 0 x 9 0 ) (0^\circ \leq x\leq 90^\circ ) and 3 6 < 3 7 36^\circ <37^\circ , the only option greater than 0.8 0.8 is 1 + 5 4 \boxed{\frac{1+\sqrt{5}}{4}}

To be precise it’s arccos 0.8 = 36.8698976 4 \arccos0.8=36.86989764^\circ

Achmad Damanhuri - 2 years, 2 months ago

Log in to reply

Oh, thank you.

Mr. India - 2 years, 2 months ago

Really clever. If you work smart you don't have to work hard.

Zahid Hussain - 1 year, 11 months ago
. .
Apr 17, 2021

cos 36 ° 0.8 \cos 36\degree \approx 0.8 , so we have to just find its approximation.

Then, it is 1 + 5 4 \displaystyle \boxed { \frac { 1 + \sqrt { 5 } } { 4 } } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...