cos α = 1 13 \cos \alpha=\frac{1}{13}

Geometry Level 1

If cos α = 1 13 \cos \alpha=\frac{1}{13} and cos β = 12 13 , \cos \beta=\frac{12}{13}, what is the value of sin ( α + β ) sin ( α β ) ? \sin (\alpha+\beta) \sin (\alpha-\beta)?

9 13 \frac{9}{13} 8 13 \frac{8}{13} 11 13 \frac{11}{13} 10 13 \frac{10}{13}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Prasun Biswas
Mar 1, 2014

We should first know the identity sin ( α + β ) sin ( α β ) = sin 2 α sin 2 β \sin (\alpha + \beta) \sin (\alpha - \beta)=\sin^2 \alpha - \sin^2 \beta .

Now, given that cos α = 1 13 \cos \alpha = \frac{1}{13} and cos β = 12 13 \cos \beta = \frac{12}{13} . Then ----

sin ( α + β ) sin ( α β ) \sin (\alpha + \beta) \sin (\alpha - \beta)

= sin 2 α sin 2 β =\sin^2 \alpha - \sin^2 \beta

= ( 1 cos 2 α ) ( 1 cos 2 β ) =(1 - \cos^2 \alpha)-(1 - \cos^2 \beta) [since, sin 2 θ = 1 cos 2 θ \sin^2 \theta = 1 - \cos^2 \theta ]

= 1 c o s 2 α 1 + cos 2 β =1 - cos^2 \alpha - 1 + \cos^2 \beta

= c o s 2 β cos 2 α =cos^2 \beta - \cos^2 \alpha

= ( cos β + cos α ) ( cos β cos α ) =(\cos \beta + \cos \alpha)(\cos \beta - \cos \alpha) [since, a 2 b 2 = ( a + b ) ( a b ) a^2-b^2=(a+b)(a-b) ]

= ( 12 13 + 1 13 ) ( 12 13 1 13 ) =(\frac{12}{13}+\frac{1}{13})(\frac{12}{13}-\frac{1}{13})

= 13 13 × 11 13 = 1 × 11 13 = 11 13 =\frac{13}{13}\times \frac{11}{13} = 1\times \frac{11}{13} = \boxed{\frac{11}{13}}

DONE IN SAME WAY

YASH KASAT - 7 years, 3 months ago

Almost the same way. :D

Pajri Aprilio - 7 years, 3 months ago

I did it the same way

Austin Dsouza - 7 years, 1 month ago
Kirsten Gouria
Feb 25, 2014

2.sinA.sinB=cos(A-B)-cos(A+B)

cos2A=2cos^2(A)-1

11/13

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...