I Need Some Clever Manipulation

Geometry Level 2

True or false :

cos 1 2 + cos 6 0 + cos 8 4 = cos 2 4 + cos 4 8 \cos12 ^\circ+ \cos60^\circ+ \cos84^\circ= \cos24^\circ+ \cos48^\circ

True False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Note first that, by using the relevant sum to product identity , we have that the left-hand side of the given equation can be written as

A = ( cos ( 12 ) + cos ( 84 ) ) + cos ( 60 ) = 2 cos ( 36 ) cos ( 48 ) + 1 2 A = (\cos(12) + \cos(84)) + \cos(60) = 2\cos(36)\cos(48) + \dfrac{1}{2} .

Then using the identity sin ( 2 θ ) = 2 sin ( θ ) cos ( θ ) \sin(2\theta) = 2\sin(\theta)\cos(\theta) we see that

2 sin ( 36 ) A = 2 sin ( 72 ) cos ( 48 ) + sin ( 36 ) = sin ( 120 ) + sin ( 24 ) + sin ( 36 ) 2\sin(36)*A = 2\sin(72)\cos(48) + \sin(36) = \sin(120) + \sin(24) + \sin(36) ,

this last step coming as a result of one of the product to sum identities listed in the aforementioned link. Two more applications of sum to product formulas, along with the facts that sin ( x ) = sin ( 180 x ) \sin(x) = \sin(180 - x) and sin ( x ) = cos ( 90 x ) \sin(x) = \cos(90 - x) , yields that

2 sin ( 36 ) A = sin ( 60 ) + ( sin ( 24 ) + sin ( 36 ) ) = cos ( 30 ) + 2 sin ( 30 ) cos ( 6 ) = 2\sin(36)*A = \sin(60) + (\sin(24) + \sin(36)) = \cos(30) + 2\sin(30)\cos(6) =

cos ( 30 ) + cos ( 6 ) = 2 cos ( 18 ) cos ( 12 ) \cos(30) + \cos(6) = 2\cos(18)\cos(12) .

Resorting to yet more sum to product/product to sum/double-angle 'trickery', we find that

2 sin ( 36 ) cos ( 36 ) A = 2 cos ( 36 ) cos ( 18 ) cos ( 12 ) sin ( 72 ) A = 2 cos ( 36 ) cos ( 18 ) cos ( 12 ) 2\sin(36)\cos(36)*A = 2\cos(36)\cos(18)\cos(12) \Longrightarrow \sin(72)*A = 2\cos(36)\cos(18)\cos(12)

cos ( 18 ) A = cos ( 18 ) ( 2 cos ( 36 ) cos ( 12 ) ) A = cos ( 24 ) + cos ( 48 ) \Longrightarrow \cos(18)*A = \cos(18)*(2\cos(36)\cos(12)) \Longrightarrow A = \cos(24) + \cos(48) ,

thus proving that the given equation is indeed t r u e \boxed{true} .

exactly!! nice way to approach the question.

Rakshit Joshi - 5 years, 1 month ago
Needa Petkar
Apr 28, 2016

cos 60° = 0.5

cos 12° = 0.97815

cos 84° = 0.10453

L.H.S= cos 60°+ cos 12° +cos 84°

     = 0.5 + 0.97815 + 0.10453    

     = 1.58268

cos 24° = 0.91355

cos 48° = 0.66913

R.H.S= cos 24° + cos 48°

      = 0.91355 + 0.66913

      = 1.58268

Therefore, L.H.S=R.H.S

it's not "clever"!

Bersam Karbasion - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...