Cos and Sin only

Geometry Level 3

If cos 52 ° cos 24 ° + cos 38 ° cos 66 ° = sin ( x ° ) \cos52°\cos24°+\cos38°\cos66° = \sin(x°)

where 0 ° \le x ° \le 90 ° 90°

Then find the value of x x .


The answer is 62.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ram Mohith
Jun 26, 2018

The given expression is : cos 5 2 cos 2 4 + c o s 3 8 cos 6 6 = sin x \cos 52 ^\circ \cdot \cos 24 ^\circ + cos 38 ^\circ \cdot \cos 66 ^\circ = \sin x ^\circ

cos ( 90 38 ) cos 2 4 + cos 3 8 cos ( 90 24 ) + sin x \implies \cos (90 - 38) ^\circ \cdot \cos 24 ^\circ + \cos 38 ^\circ \cdot \cos (90 - 24) ^\circ + \sin x ^\circ

sin 3 8 cos 2 4 + c o s 3 8 sin 2 4 = sin x \implies \sin 38 ^\circ \cdot \cos 24 ^\circ + cos 38 ^\circ \cdot \sin 24 ^\circ = \sin x ^\circ

Now the expression is in the form sin A cos B + sin B cos A = sin ( A + B ) \sin A \cdot \cos B + \sin B \cdot \cos A = \sin(A + B)

So, A = 38 , B = 24 A = 38, B = 24

Now, sin ( A + B ) = sin x \sin(A + B) = \sin x^\circ

x = 38 + 24 = 6 2 \implies x = 38 + 24 = 62 ^\circ

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...