Cos and sin

Geometry Level 4

Given

cos A + cos B + cos C = 0 \cos A+\cos B+\cos C=0 and

sin A + sin B + sin C = 0 \sin A+\sin B+\sin C=0 .

Then,
cos 2 A + cos 2 B + cos 2 C = x \cos 2A+\cos 2B+\cos 2C=x and sin 2 A + sin 2 B + sin 2 C = y \sin 2A+\sin 2B+\sin 2C=y .

Find x + y x+y .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

cos ( x ) + cos ( y ) + cos ( z ) + i ( sin ( x ) + sin ( y ) + sin ( z ) ) = 0 \cos(x) + \cos(y) + \cos(z) + i(\sin(x) + \sin(y) + \sin(z)) = 0
e i x + e i y + e i z = 0 e^{ix} + e^{iy} + e^{iz} = 0
cos ( x ) + cos ( y ) + cos ( z ) i ( sin ( x ) + sin ( y ) + sin ( z ) ) = 0 \cos(x) + \cos(y) + \cos(z) - i(\sin(x) + \sin(y) + \sin(z)) = 0
e i x + e i y + e i z = 0 e^{-ix} + e^{-iy} + e^{-iz} = 0
e i ( x + y ) + e i ( x + z ) + e i ( z + y ) = 0 e^{i(x+y)} + e^{i(x+z)} + e^{i(z+y)} = 0
( e i x + e i y + e i z ) 2 = e i 2 x + e i 2 y + e i 2 z + 2 ( e i ( x + y ) + e i ( x + z ) + e i ( z + y ) ) (e^{ix} + e^{iy} + e^{iz})^{2} = e^{i2x} + e^{i2y} + e ^{i2z} + 2(e^{i(x+y)} + e^{i(x+z)} + e^{i(z+y)})
e i 2 x + e i 2 y + e i 2 z = 0 \therefore e^{i2x} + e^{i2y} + e ^{i2z} = 0
cos ( 2 x ) + cos ( 2 y ) + cos ( 2 z ) + i ( sin ( 2 x ) + sin ( 2 y ) + sin ( 2 z ) ) = 0 \cos(2x) + \cos(2y) + \cos(2z) + i(\sin(2x) + \sin(2y) + \sin(2z)) = 0
cos ( 2 x ) + cos ( 2 y ) + cos ( 2 z ) = 0 \cos(2x) + \cos(2y) + \cos(2z) = 0
sin ( 2 x ) + sin ( 2 y ) + sin ( 2 z ) = 0 \sin(2x) + \sin(2y) + \sin(2z) = 0
Infact,
cos ( 2 n x ) + cos ( 2 n y ) + cos ( 2 n z ) = 0 \cos(2^{n}x) + \cos(2^{n}y) + \cos(2^{n}z) = 0
sin ( 2 n x ) + sin ( 2 n y ) + sin ( 2 n z ) = 0 \sin(2^{n}x) + \sin(2^{n}y) + \sin(2^{n}z) = 0 n Z + n \in Z^{+}


Very correct!!

Rakshit Joshi - 5 years, 1 month ago

You could've skipped a step by taking conjugates for the first equation involving complex exponentials... Anyways, standard solution though.

A Former Brilliant Member - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...