cos θ + cos 2 θ + cos 3 θ = 1
Given the above trigonometric equation. And if the trigonometric equation below is also true for constants a , b , c . Find the value of a + b + c .
sin 6 θ = a + b sin 2 θ + c sin 4 θ
This problem is part of the set Trigonometry .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
For simplicity, let C = cos θ and S = sin θ .
It is given that: C 3 + C 2 + C = 1
⇒ ( C 3 + C 2 + C ) 2 = C 6 + C 4 + C 2 + 2 ( C 3 C 2 + C 3 C + C 2 C ) = 1 2
⇒ C 6 + 2 C 5 + 3 C 4 + 2 C 3 + C 2 = 1
⇒ C 6 + 2 C 2 ( C 3 + C 2 + C ) + C 4 + C 2 = 1
⇒ C 6 + 2 C 2 ( 1 ) + C 4 + C 2 = C 6 + C 4 + 3 C 2 = 1
⇒ C 6 = 1 − 3 C 2 − C 4
Now:
sin 6 θ = S 6 = ( S 2 ) 3 = ( 1 − C 2 ) 3 = 1 − 3 C 2 + 3 C 4 − C 6
= 1 − 3 C 2 + 3 C 4 − ( 1 − 3 C 2 − C 4 ) = 4 C 4 = 4 ( 1 − S 2 ) 2
= 4 ( 1 − 2 S 2 + S 4 = 4 − 8 sin 2 θ + 4 sin 4 θ
⇒ a + b + c = 4 − 8 + 4 = 0
sir ,you are really awesome sir,,,,,,hats off for your problem solving technique...i m very much excited to see your solution....
cos + cos 3 = cos ( 2 − sin 2 ) = sin 2 ( 1 − sin 2 ) ( 2 − sin 2 ) 2 = cos 2 ( 2 − sin 2 ) 2 = sin 4 4 − sin 6 − 8 sin 2 + 5 sin 4 = sin 4 sin 6 = − 4 + 8 sin 2 − 4 sin 4 a = − 4 , b = 8 , c = − 4
Problem Loading...
Note Loading...
Set Loading...
cos θ + cos 2 θ + cos 3 θ = 1
cos θ + cos 3 θ = 1 − cos 2 θ = sin 2 θ
squaring both side,
cos 2 θ + 2 cos 4 θ + cos 6 θ = sin 4 θ
[ 1 − sin 2 θ ] + 2 [ ( 1 − sin 2 θ ] 2 + [ 1 − sin 2 θ ] 3 = sin 4 θ
[ 1 − sin 2 θ ] + [ 2 − 4 sin 2 θ + 2 sin 4 θ ] + [ 1 − 3 sin 2 θ + 3 sin 4 θ − sin 6 θ ] = sin 4 θ
4 − 8 sin 2 θ + 4 sin 4 θ = sin 6 θ
Thus, a + b + c = 4 − 8 + 4 = 0