Triple Cosine to Triple Sine

Geometry Level 4

cos θ + cos 2 θ + cos 3 θ = 1 \cos\theta + \cos^{2}\theta + \cos^{3}\theta = 1

Given the above trigonometric equation. And if the trigonometric equation below is also true for constants a , b , c a,b,c . Find the value of a + b + c a+b+c .

sin 6 θ = a + b sin 2 θ + c sin 4 θ \sin^{6}\theta = a + b\sin^{2}\theta + c\sin^{4}\theta

This problem is part of the set Trigonometry .

0 -1 2 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Discussions for this problem are now closed

Mas Mus
Mar 12, 2015

cos θ + cos 2 θ + cos 3 θ = 1 \cos\theta + \cos^{2}\theta + \cos^{3}\theta = 1

cos θ + cos 3 θ = 1 cos 2 θ = sin 2 θ \cos\theta + \cos^{3}\theta = 1- \cos^{2}\theta =\sin^{2}\theta

squaring both side,

cos 2 θ + 2 cos 4 θ + cos 6 θ = sin 4 θ \cos^{2}\theta +2\cos^{4}\theta+ \cos^{6}\theta = \sin^{4}\theta

[ 1 sin 2 θ ] + 2 [ ( 1 sin 2 θ ] 2 + [ 1 sin 2 θ ] 3 = sin 4 θ [1-\sin^{2}\theta]+2[(1-\sin^{2}\theta]^{2}+[1-\sin^{2}\theta]^{3}=\sin^{4}\theta

[ 1 sin 2 θ ] + [ 2 4 sin 2 θ + 2 sin 4 θ ] + [ 1 3 sin 2 θ + 3 sin 4 θ sin 6 θ ] = sin 4 θ [1-\sin^{2}\theta]+[2-4\sin^{2}\theta+2\sin^{4}\theta]+[1-3\sin^{2}\theta+3\sin^{4}\theta-\sin^{6}\theta]=\sin^{4}\theta

4 8 sin 2 θ + 4 sin 4 θ = sin 6 θ 4-8\sin^{2}\theta+4\sin^{4}\theta=\sin^{6}\theta

Thus, a + b + c = 4 8 + 4 = 0 a+b+c=4-8+4=\boxed{0}

For simplicity, let C = cos θ C=\cos{\theta} and S = sin θ S=\sin{\theta} .

It is given that: C 3 + C 2 + C = 1 C^3+C^2+C =1

( C 3 + C 2 + C ) 2 = C 6 + C 4 + C 2 + 2 ( C 3 C 2 + C 3 C + C 2 C ) = 1 2 \Rightarrow (C^3+C^2+C)^2 = C^6 + C^4 + C^2 + 2(C^3C^2+C^3C+C^2C)=1^2

C 6 + 2 C 5 + 3 C 4 + 2 C 3 + C 2 = 1 \Rightarrow C^6 + 2C^5 + 3C^4 + 2C^3 +C^2=1

C 6 + 2 C 2 ( C 3 + C 2 + C ) + C 4 + C 2 = 1 \Rightarrow C^6 + 2C^2 (C^3+C^2+C) + C^4 +C^2=1

C 6 + 2 C 2 ( 1 ) + C 4 + C 2 = C 6 + C 4 + 3 C 2 = 1 \Rightarrow C^6 + 2C^2 (1) + C^4 +C^2= C^6 + C^4 +3C^2 = 1

C 6 = 1 3 C 2 C 4 \Rightarrow C^6 = 1 - 3C^2-C^4

Now:

sin 6 θ = S 6 = ( S 2 ) 3 = ( 1 C 2 ) 3 = 1 3 C 2 + 3 C 4 C 6 \sin^6{\theta} = S^6 = (S^2)^3 = (1-C^2)^3 = 1 - 3C^2+3C^4 - C^6

= 1 3 C 2 + 3 C 4 ( 1 3 C 2 C 4 ) = 4 C 4 = 4 ( 1 S 2 ) 2 \quad \quad = 1 - 3C^2+3C^4 - (1 - 3C^2-C^4) = 4C^4 = 4(1-S^2)^2

= 4 ( 1 2 S 2 + S 4 = 4 8 sin 2 θ + 4 sin 4 θ \quad \quad = 4(1-2S^2+S^4 = 4 - 8\sin^2{\theta}+4\sin^4{\theta}

a + b + c = 4 8 + 4 = 0 \Rightarrow a+b+c = 4-8+4 = \boxed{0}

sir ,you are really awesome sir,,,,,,hats off for your problem solving technique...i m very much excited to see your solution....

shakthi uma devi sathiyan - 6 years, 5 months ago
Jakub Šafin
Jan 6, 2015

cos + cos 3 = cos ( 2 sin 2 ) = sin 2 \cos+\cos^3=\cos(2-\sin^2)=\sin^2 ( 1 sin 2 ) ( 2 sin 2 ) 2 = cos 2 ( 2 sin 2 ) 2 = sin 4 (1-\sin^2)(2-\sin^2)^2=\cos^2(2-\sin^2)^2=\sin^4 4 sin 6 8 sin 2 + 5 sin 4 = sin 4 4-\sin^6-8\sin^2+5\sin^4=\sin^4 sin 6 = 4 + 8 sin 2 4 sin 4 \sin^6=-4+8\sin^2-4\sin^4 a = 4 , b = 8 , c = 4 a=-4, b=8, c=-4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...