cos-cos+cos

Algebra Level 2

cos π 7 cos 2 π 7 + cos 3 π 7 = ? \large \cos\frac{\pi}{7}-\cos\frac{2\pi}{7}+\cos\frac{3\pi}{7}=?

Try not to use the calculator(~ ̄▽ ̄)~


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

X = cos π 7 cos 2 π 7 + cos 3 π 7 Note that cos ( π θ ) = cos θ = cos π 7 + cos 5 π 7 + cos 3 π 7 and k = 1 n 1 cos ( 2 k + 1 2 n + 1 π ) = 1 2 (see note) = 1 2 = 0.5 \begin{aligned} X & = \cos \frac \pi 7 {\color{#3D99F6} - \cos \frac {2\pi}7} + \cos \frac {3\pi}7 & \small \color{#3D99F6} \text{Note that }\cos (\pi - \theta) = - \cos \theta \\ & = \cos \frac \pi 7 {\color{#3D99F6} + \cos \frac {5\pi}7} + \cos \frac {3\pi}7 & \small \color{#3D99F6} \text{and }\sum_{k=1}^{n-1} \cos \left(\frac {2k+1}{2n+1}\pi\right) = \frac 12 \text{ (see note)} \\ & = \frac 12 = \boxed{0.5} \end{aligned}

Note: Proof of k = 1 n 1 cos ( 2 k + 1 2 n + 1 π ) = 1 2 \displaystyle \sum_{k=1}^{n-1} \cos \left(\frac {2k+1}{2n+1}\pi\right) = \frac 12 .

Proof for this case

X = cos π 7 cos 2 π 7 + cos 3 π 7 Note that cos ( π θ ) = cos θ = cos 6 π 7 cos 2 π 7 cos 4 π 7 Let ω = e 2 π 7 i , the 7th root of unity. = ω 3 + ω 3 2 ω + ω 1 2 ω 2 + ω 2 2 Since ω 7 = 1 = 1 2 ( ω 3 + ω 4 + ω + ω 6 + ω 2 + ω 5 ) and ω 6 + ω 5 + ω 4 + ω 3 + ω 2 + ω + 1 = 0 = 1 2 ( 1 ) = 1 2 = 0.5 \begin{aligned} X & = {\color{#3D99F6}\cos \frac \pi 7} - \cos \frac {2\pi}7 {\color{#3D99F6} + \cos \frac {3\pi}7} & \small \color{#3D99F6} \text{Note that }\cos (\pi - \theta) = - \cos \theta \\ & = {\color{#3D99F6}- \cos \frac {6\pi} 7} - \cos \frac {2\pi}7 {\color{#3D99F6}- \cos \frac {4\pi}7} & \small \color{#3D99F6} \text{Let } \omega = e^{\frac {2\pi}7i} \text{, the 7th root of unity.} \\ & = - \frac {\omega^3+\color{#3D99F6}\omega^{-3}}2 - \frac {\omega+\color{#3D99F6}\omega^{-1}}2 - \frac {\omega^2+\color{#3D99F6}\omega^{-2}}2 & \small \color{#3D99F6} \text{Since }\omega^7 = 1 \\ & = - \frac 12 \left( \omega^3+ {\color{#3D99F6}\omega^4} + \omega+{\color{#3D99F6}\omega^6} + \omega^2+{\color{#3D99F6}\omega^5} \right) & \small \color{#3D99F6} \text{and } \omega^6 + \omega^5 + \omega^4 + \omega^3 + \omega^2 + \omega + 1 = 0 \\ & = - \frac 12 (-1) = \frac 12 = \boxed{0.5} \end{aligned}

Kirigaya Kazuto
Oct 2, 2018

My method is tedious, so more nice methods are welcomed!

Check the root of x 7 = 1 , x C x^{7}=1,x∈C ①. According to Fundamental theorem of algebra , there are seven roots x 0 , x 1 , . . . , x 6 x_{0},x_{1},...,x_{6} . i \large{\boxed{i}} is imaginary unit. x 7 = 1 = cos 0 + i sin 0 x = cos 2 k π 7 + i sin 2 k π 7 , ( k = 0 , 1 , 2 , . . . , 6 ) B y , x 7 1 = 0 , B y V i e t a s t h e o r e m , i = 0 6 x i = 0 1 = 0 B a c k t o k = 0 6 ( cos 2 k π 7 + i sin 2 k π 7 ) = 0 k = 0 6 cos 2 k π 7 = 0 0 = 1 + cos 2 π 7 + cos 4 π 7 + . . . + cos 12 π 7 0 = 1 + cos 2 π 7 cos 3 π 7 cos π 7 cos π 7 cos 3 π 7 + cos 2 π 7 cos π 7 cos 2 π 7 + cos 3 π 7 = 1 2 \begin{aligned} x^{7}=1=\cos0+i\sin0 \\ \implies x=\cos\frac{2k\pi}{7}+i\sin\frac{2k\pi}{7}②, (k=0,1,2,...,6) \\ \ By ①,\implies x^{7}-1=0,By Vieta's theorem,\sum_{i=0}^6 x_{i}=-\frac{0}{1}=0 \\ \ Back to ② \\ \implies \sum_{k=0}^6 (\cos\frac{2k\pi}{7}+i\sin\frac{2k\pi}{7})=0 \\ \implies \sum_{k=0}^6 \cos\frac{2k\pi}{7}=0 \\ \implies 0=1+\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+...+\cos\frac{12\pi}{7} \\ \implies 0=1+\cos\frac{2\pi}{7}-\cos\frac{3\pi}{7}-\cos\frac{\pi}{7}-\cos\frac{\pi}{7}-\cos\frac{3\pi}{7}+\cos\frac{2\pi}{7} \\ \implies \cos\frac{\pi}{7}-\cos\frac{2\pi}{7}+\cos\frac{3\pi}{7}=\frac{1}{2} \end{aligned}

@Kirigaya Kazuto , you should put a backlash on all functions including \sin and \cos in LaTex. Note that when you key in \cos x cos x \cos x , the cos is not in italic which is for constant and variable. See that x is in italic. Also note that there is a space between cos and x. When you key in cos x c o s x cos x , all are in italic and no space between cos and x.

You can see the LaTex code by placing your mouse cursor on top of the formulas.

Chew-Seong Cheong - 2 years, 8 months ago

Log in to reply

Thanks for your guidence

Kirigaya Kazuto - 2 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...