Cos I can

Calculus Level 4

If

n = 1 cos n n \sum_{n=1}^{\infty} \frac{\cos n}{n}

can be expressed in the form 1 2 ln ( a b cos c ) -\frac 12 \ln(a-b\cos c) , where a , b , a,b, and c c are positive integers, find a + b + c a+b+c .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Jake Lai
May 31, 2015

Easiest solution:

Use cos θ = e i θ + e i θ 2 \displaystyle \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} and n = 1 x n n \displaystyle \sum_{n=1}^{\infty} \frac{x^{n}}{n} . You'll get

1 2 ln ( ( 1 e i ) ( 1 e i ) ) = 1 2 ln ( 2 2 cos 1 ) -\frac{1}{2} \ln((1-e^{i})(1-e^{-i})) = \boxed{-\frac{1}{2} \ln(2-2\cos 1)}

Prakhar Gupta
May 28, 2015

We will make use of complex numbers and Taylor expansion of logarithmic function to solve this question.

We know that cos x = R e ( e ι x ) \cos x = Re(e^{\iota x}) Using above fact we can write that cos n n = R e ( e ι n n ) \dfrac{\cos n}{n} = Re\Big(\dfrac{e^{\iota n}}{n}\Big) n = 1 cos n n = n = 1 R e ( e ι n n ) \sum_{n=1}^{\infty}\dfrac{\cos n}{n} = \sum_{n=1}^{\infty} Re\Big( \dfrac{e^{\iota n}}{n} \Big) Using the fact that summation is distributive over Real and Imaginary parts of a complex number, the Real part function and summation can be interchanged. n = 1 cos n n = R e ( n = 1 e ι n n ) \sum_{n=1}^{\infty}\dfrac{\cos n}{n} = Re\Big( \sum_{n=1}^{\infty} \dfrac{e^{\iota n}}{n}\Big) The above series so formed can be correlated with Taylor expansion of logarithmic function. ln ( 1 x ) = n = 1 x n n \ln(1-x) =- \sum_{n=1}^{\infty} \dfrac{x^{n}}{n} Put x = e ι x = e^{\iota} ln ( 1 e ι ) = n = 1 e ι n n -\ln(1-e^{\iota}) = \sum_{n=1}^{\infty} \dfrac{e^{\iota n}}{n} n = 1 e ι n n = ln ( 1 cos 1 ι sin 1 ) \sum_{n=1}^{\infty} \dfrac{e^{\iota n}}{n} = -\ln(1-\cos1-\iota \sin1) = ln ( 2 sin 2 1 2 2 ι sin 1 2 cos 1 2 ) =-\ln(2\sin^{2} \dfrac{1}{2} - 2\iota \sin\dfrac{1}{2} \cos\dfrac{1}{2}) = ln ( 2 sin 1 2 ) ln ( sin 1 2 ι cos 1 2 ) = -\ln(2\sin\dfrac{1}{2}) - \ln(\sin\dfrac{1}{2} - \iota \cos\dfrac{1}{2}) = ln ( 2 sin 1 2 ) + ln ( 1 sin 1 2 ι cos 1 2 ) = -\ln(2\sin\dfrac{1}{2}) + \ln\Big(\dfrac{1}{\sin\dfrac{1}{2} - \iota \cos\dfrac{1}{2}}\Big) = ln ( 2 sin 1 2 ) + ln ( ι e ι 2 ) = -\ln(2\sin\dfrac{1}{2}) + \ln\Big( \dfrac{\iota}{e^{\frac{\iota}{2}}}\Big) Now using the fact that ι = e ι π 2 \iota = e^{\frac{\iota \pi}{2}} . = ln ( 2 sin 1 2 ) + ln e ι π 1 2 = -\ln(2\sin\dfrac{1}{2}) + \ln e^{\iota \dfrac{\pi-1}{2}} n = 1 e ι n n = ln ( 2 sin 1 2 ) + ι π 1 2 \sum_{n=1}^{\infty} \dfrac{e^{\iota n}}{n} = -\ln(2\sin\dfrac{1}{2}) + \iota \dfrac{\pi - 1}{2} R e ( n = 1 e ι n n ) = ln ( 2 sin 1 2 ) Re\Big( \sum_{n=1}^{\infty} \dfrac{e^{\iota n}}{n}\Big) = -\ln(2\sin\dfrac{1}{2}) n = 1 cos n n = 1 2 ln ( 4 sin 2 1 2 ) \sum_{n=1}^{\infty}\dfrac{\cos n}{n} = \dfrac{-1}{2}\ln(4\sin^{2}\dfrac{1}{2}) n = 1 cos n n = 1 2 ln ( 2 2 cos 1 ) \sum_{n=1}^{\infty}\dfrac{\cos n}{n} = \dfrac{-1}{2}\ln(2-2\cos1)

I did it the same way! But I have a small doubt in this solution. Is Taylor Series valid for |x|<1 or |x|<=1. Can you please help?

Samarth Kapoor - 6 years ago
Majed Musleh
May 27, 2015

N o t e t h a t ( T a y l o r s e r i e s ) Note that (Taylor series)

n = 1 x n n = l o g ( 1 x ) \sum_{n=1}^∞\frac{x^{n}}{n}=-log(1-x)

L e t x = e i w e g e t Let x=e^{i} we get

n = 1 x n n \sum_{n=1}^∞ \frac{x^{n}}{n} = n = 1 e i n n =\sum_{n=1}^∞ \frac{e^{in}}{n} = n = 1 ( e i ) n n =\sum_{n=1}^∞ \frac{(e^{i})^{n}}{n}

= l o g ( 1 e i ) =-log(1-e^{i})

b u t e i n n = c o s ( n ) n + i s i n ( n ) n but \frac{e^{in}}{n}=\frac{cos(n)}{n}+i \frac{sin(n)}{n} S o n = 1 c o s ( n ) n So \sum_{n=1}^∞ \frac{cos(n)}{n} = r e a l p a r t ( n = 1 e i n n =- real \ part(\sum_{n=1}^∞ \frac{e^{in}}{n} = r e a l p a r t ( l o g ( 1 e i ) ) =-real \ part(log(1-e^{i})) )

t h e l o g o f a c o m p l e x n u m b e r R e i n i s l o g ( R ) + i n the \ log \ of \ a \ complex \ number \ Re^{in} \ is \ log(R)+in

t h e n r e a l p a r t i s l o g ( R ) then \ real \ part \ is \ log(R)

N o w t o f i n d R Now \ to \ find \ R

1 e i = 1 c o s ( 1 ) i s i n ( 1 ) 1-e^{i}=1-cos(1)-isin(1)

R = ( ( 1 c o s ( 1 ) ) 2 + ( s i n ( 1 ) ) 2 ) 1 2 R=((1-cos(1))^{2}+(sin(1))^{2})^{\frac{1}{2}}

R = ( 2 2 c o s ( 1 ) ) 1 2 R=(2-2cos(1))^{\frac{1}{2}}

F i n a l l y Finally

n = 1 c o s ( n ) n = l o g ( R ) = 1 2 l o g ( 2 2 c o s ( 1 ) ) \sum_{n=1}^∞ \frac{cos(n)}{n}=-log(R)=-\frac{1}{2} log(2-2cos(1))

a = 2 , b = 2 , c = 1 a=2,b=2,c=1

a + b + c = 5 a+b+c=\boxed{5}

Nice solution

Led Tasso - 5 years, 11 months ago
Krishna Sharma
May 28, 2015

I'll show a different method to solve this(bit lengthier)

We know that

s i n ( n x ) d x = c o s ( n x ) n + C \displaystyle \int sin(nx) dx = -\dfrac{cos(nx)}{n} + C

Since we have to work with c o s ( n ) n \frac{cos(n)}{n} we have to set lower(or upper) limit as 1. Upper(or lower) is upto us, for simplicity I'll take it as π 2 \frac{\pi}{2} . So we have

1 π 2 s i n ( n x ) d x = c o s ( n ) n \displaystyle \int_{1}^{\frac{\pi}{2}} sin(nx) dx = \dfrac{cos(n)}{n}

Now summing up for different value of 'n' upto a value say 'N'

1 π 2 ( n = 1 N s i n ( n x ) ) d x = n = 1 N c o s ( n ) n \displaystyle \int_{1}^{\frac{\pi}{2}} \left( \sum_{n = 1}^{N} sin(nx) \right) dx = \sum_{n = 1}^{N} \dfrac{cos(n)}{n}

We know that

n = 1 N s i n ( n x ) = sin ( N x / 2 ) . sin ( ( N + 1 ) x / 2 ) sin ( x / 2 ) = cos ( x / 2 ) cos ( ( 2 N + 1 ) x / 2 ) 2 s i n ( x / 2 ) \displaystyle \sum_{n = 1}^{N} sin(nx) = \dfrac{ \sin(Nx/2).\sin((N+1)x/2)}{\sin(x/2)} = \dfrac{\cos(x/2) - \cos( (2N+1)x/2)}{2sin(x/2)}

Since we have to deal with infinite summation we will take limit

lim N n = 1 N c o s ( n ) n = lim N 1 π 2 ( c o s ( x / 2 ) 2 s i n ( x / 2 ) c o s ( ( 2 N + 1 ) x / 2 ) 2 s i n ( x / 2 ) ) d x \displaystyle \lim_{N \to \infty } \sum_{n = 1}^{N} \dfrac{cos(n)}{n} = \lim_{N \to \infty } \int_{1}^{\frac{\pi}{2}} \left( \dfrac{cos(x/2)}{2sin(x/2)} - \dfrac{cos((2N+1)x/2)}{2sin(x/2)} \right) dx

The first integral is easy just substitute s i n ( x / 2 ) = t sin(x/2) = t , for the second integral as N goes on increasing the integral will tends to 0.

Ok...too much work done here after solving the integral and reduce it in given closed form to get

n = 1 c o s ( n ) n = 1 2 l n ( 2 2 c o s 1 ) \displaystyle \sum_{n = 1}^{\infty } \dfrac{cos(n)}{n} = \frac{-1}{2} ln( 2 - 2cos1) .

Phew....

i didn't get how the second integral tends to zero in your solution. Can you please elaborate?

Samarth Kapoor - 6 years ago

Log in to reply

Because after the integration 'N' will come in denominator, you can check for different values of 'N'. Ask again if it is still not clear.

Krishna Sharma - 6 years ago

Log in to reply

how did you integrate it?

Samarth Kapoor - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...