Cause I hate cos

Geometry Level 2

( cos ( 8 0 ) × cos ( 2 0 ) × cos ( 6 0 ) × cos ( 4 0 ) ) 1 = ? \large \left( \cos(80^\circ)\times \cos(20^\circ)\times\cos(60^\circ)\times\cos(40^\circ)\right)^{-1} = \ ?


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Swagat Panda
Jun 25, 2015

We know that cos 60 ° = 1 2 \cos { 60° } =\frac { 1 }{ 2 } and the value of the rest of the expression becomes 1 2 ( 1 2 3 sin 20 ° ) . sin ( 2 3 . sin 20 ° ) 1 16 × 1 sin 20 ° . sin 160 ° 1 16 sin 20 ° . sin ( 180 ° 20 ° ) 1 16 ( sin 20 ° sin 20 ° ) = 1 16 \frac { 1 }{ 2 } \left( \frac { 1 }{ { 2 }^{ 3 }\sin { 20° } } \right) .\sin { \left( { 2 }^{ 3 }.\sin { 20 } ° \right) } \\ \Rightarrow \frac { 1 }{ 16 } \times \frac { 1 }{ \sin { 20° } } .\sin { 160° } \\ \Rightarrow \frac { 1 }{ 16\sin { 20° } } .\sin { (180°-20° } )\\ \Rightarrow \frac { 1 }{ 16 } \left( \frac { \sin { 20° } }{ \sin { 20° } } \right) =\frac { 1 }{ 16 } Hence the inverse of the given expression is ( 1 16 ) 1 = 16 { \left( \frac { 1 }{ 16 } \right) }^{ -1 }=16

Moderator note:

One might argue that applying the triple angle trigonometric formula 4 cos ( A ) cos ( 6 0 A ) cos ( 6 0 + A ) = cos ( 3 A ) 4\cos(A) \cos(60^\circ - A) \cos(60^\circ + A) = \cos(3A) is simpler.

Manas Uniyal
Jul 5, 2015

cosA.cos2A.cos4A.cos8A............... upto n terms

=sin(2 Greatest angle)/2^(Total number of terms) sin(Smallest angle)

In this case,

(sin2x80)/(2^4)(sin20)

=(sin160)/16sin20

=sin20/16sin20

=1/16

Answer = (1/16)^-1 = 16

Best approach. Well done

Raghav Gupta - 5 years, 11 months ago
Trevor Arashiro
Jun 28, 2015

Been a while since I used Chebyshev polynomials, so here we go.

We're working with CP of the first kind. Ignore the 60 for now so we have cos ( 20 ) cos ( 40 ) cos ( 80 ) \cos(20)\cos(40)\cos(80) . Our polynomial will be of degree three and have roots of cos ( 3 θ ) \cos(3\theta) . The first coefficient is 2 to the power of the degree of the equation-1.

2 2 x 3 + . . . + 0 = cos ( 3 20 ) 2^2x^3+...+0=\cos(3\cdot20)

4 x 3 + . . . 1 / 2 = 0 4x^3+...-1/2=0

The product of this polynomial's roots is the negation of the last coefficient divided by the first.

1 / 2 4 = 1 8 -\dfrac{-1/2}{4}=\dfrac{1}{8} . Multiplying this by cos ( 60 ) \cos(60) we have our answer 1 16 \dfrac{1}{16}

There you go. Very easy approach. Well done! :)

Raghav Gupta - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...